Suppr超能文献

使用 ExAblate Body MR 引导聚焦超声系统进行容积高热传递。

Volumetric hyperthermia delivery using the ExAblate Body MR-guided focused ultrasound system.

机构信息

Department of Radiology & Biomedical Imaging, University of CA, San Francisco, CA, USA.

Department of Radiation Oncology, University of California, San Francisco, CA, USA.

出版信息

Int J Hyperthermia. 2024;41(1):2349080. doi: 10.1080/02656736.2024.2349080. Epub 2024 May 5.

Abstract

OBJECTIVES

To investigate image-guided volumetric hyperthermia strategies using the ExAblate Body MR-guided focused ultrasound ablation system, involving mechanical transducer movement and sector-vortex beamforming.

MATERIALS AND METHODS

Acoustic and thermal simulations were performed to investigate volumetric hyperthermia using mechanical transducer movement combined with sector-vortex beamforming, specifically for the ExAblate Body transducer. The system control in the ExAblate Body system was modified to achieve fast transducer movement and MR thermometry-based hyperthermia control, mechanical transducer movements and electronic sector-vortex beamforming were combined to optimize hyperthermia delivery. The experimental validation was performed using a tissue-mimicking phantom.

RESULTS

The developed simulation framework allowed for a parametric study with varying numbers of heating spots, sonication durations, and transducer movement times to evaluate the hyperthermia characteristics for mechanical transducer movement and sector-vortex beamforming. Hyperthermic patterns involving 2-4 sequential focal spots were analyzed. To demonstrate the feasibility of volumetric hyperthermia in the system, a tissue-mimicking phantom was sonicated with two distinct spots through mechanical transducer movement and sector-vortex beamforming. During hyperthermia, the average values of Tmax, T10, Tavg, T90, and Tmin over 200 s were measured within a circular ROI with a diameter of 10 pixels. These values were found to be 8.6, 7.9, 6.6, 5.2, and 4.5 °C, respectively, compared to the baseline temperature.

CONCLUSIONS

This study demonstrated the volumetric hyperthermia capabilities of the ExAblate Body system. The simulation framework developed in this study allowed for the evaluation of hyperthermia characteristics that could be implemented with the ExAblate MRgFUS system.

摘要

目的

研究使用 ExAblate Body MR 引导聚焦超声消融系统的图像引导容积热疗策略,该系统涉及机械换能器运动和扇形涡旋波束形成。

材料与方法

进行了声学和热学模拟,以研究使用机械换能器运动与扇形涡旋波束形成相结合的容积热疗,具体针对 ExAblate Body 换能器。对 ExAblate Body 系统中的系统控制进行了修改,以实现快速换能器运动和基于磁共振测温的热疗控制,将机械换能器运动和电子扇形涡旋波束形成相结合,以优化热疗输送。采用组织模拟体模进行了实验验证。

结果

所开发的模拟框架允许进行参数研究,研究了不同数量的加热点、超声持续时间和换能器运动时间,以评估机械换能器运动和扇形涡旋波束形成的热疗特性。分析了涉及 2-4 个连续焦点的热疗模式。为了证明该系统容积热疗的可行性,使用机械换能器运动和扇形涡旋波束形成对组织模拟体模进行了两个不同点的超声处理。在热疗过程中,在直径为 10 个像素的圆形 ROI 内测量了 200 s 内 Tmax、T10、Tavg、T90 和 Tmin 的平均值,这些值分别为 8.6、7.9、6.6、5.2 和 4.5°C,与基线温度相比。

结论

本研究展示了 ExAblate Body 系统的容积热疗能力。本研究中开发的模拟框架允许评估可通过 ExAblate MRgFUS 系统实现的热疗特性。

相似文献

1
Volumetric hyperthermia delivery using the ExAblate Body MR-guided focused ultrasound system.
Int J Hyperthermia. 2024;41(1):2349080. doi: 10.1080/02656736.2024.2349080. Epub 2024 May 5.
2
Sonication strategies toward volumetric ultrasound hyperthermia treatment using the ExAblate body MRgFUS system.
Int J Hyperthermia. 2021;38(1):1590-1600. doi: 10.1080/02656736.2021.1998658.
4
MR thermometry-guided ultrasound hyperthermia of user-defined regions using the ExAblate prostate ablation array.
J Ther Ultrasound. 2018 Aug 13;6:7. doi: 10.1186/s40349-018-0115-5. eCollection 2018.

引用本文的文献

1
Design of multi-modal antenna arrays for microwave hyperthermia and 1H/1⁹F MRI monitoring of drug release.
PLoS One. 2024 Oct 24;19(10):e0312343. doi: 10.1371/journal.pone.0312343. eCollection 2024.

本文引用的文献

2
Sonication strategies toward volumetric ultrasound hyperthermia treatment using the ExAblate body MRgFUS system.
Int J Hyperthermia. 2021;38(1):1590-1600. doi: 10.1080/02656736.2021.1998658.
3
AAPM Task Group 241: A medical physicist's guide to MRI-guided focused ultrasound body systems.
Med Phys. 2021 Sep;48(9):e772-e806. doi: 10.1002/mp.15076. Epub 2021 Jul 29.
4
Proton Resonance Frequency Shift Thermometry: A Review of Modern Clinical Practices.
J Magn Reson Imaging. 2022 Feb;55(2):389-403. doi: 10.1002/jmri.27446. Epub 2020 Nov 20.
6
Numerical Study on the Possible Scanning Pathways to Optimize Thermal Impacts During Multiple Sonication of HIFU.
IEEE Trans Biomed Eng. 2021 Jul;68(7):2117-2128. doi: 10.1109/TBME.2020.3026420. Epub 2021 Jun 17.
7
Current developments in drug delivery with thermosensitive liposomes.
Asian J Pharm Sci. 2019 Jul;14(4):365-379. doi: 10.1016/j.ajps.2018.07.006. Epub 2018 Oct 31.
8
Model predictive control for MR-HIFU-mediated, uniform hyperthermia.
Int J Hyperthermia. 2019;36(1):1040-1050. doi: 10.1080/02656736.2019.1668065.
9
Ultrasound Hyperthermia Technology for Radiosensitization.
Ultrasound Med Biol. 2019 May;45(5):1025-1043. doi: 10.1016/j.ultrasmedbio.2018.12.007. Epub 2019 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验