Tsai Shirley C, Tsai Chen S
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Aug;60(8):1746-55. doi: 10.1109/TUFFC.2013.2755.
A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.
以最近观察到的毫米级球形水球中微米级液滴喷射为例,基于质量守恒和线性化的纳维 - 斯托克斯方程,提出了一种关于单分散微滴喷射的兆赫兹法拉第波时间不稳定性的线性理论。该理论在利用兆赫兹频率的硅基多傅里叶喇叭超声喷嘴促进法拉第波时间不稳定性的实验中得到了验证。具体而言,该线性理论不仅正确预测了法拉第波频率、法拉第不稳定性的起始阈值、粘度的影响以及液滴喷射的动力学,还建立了第一个关于喷射液滴尺寸的理论公式,即液滴直径等于所涉及法拉第波长的十分之四。在起始阈值之后,兆赫兹驱动频率下法拉第波振幅的高速增加,以及兆赫兹多傅里叶喇叭共振促进的喷嘴端面上增强的激励位移,导致在低电驱动功率(<1W)和短启动时间(<0.05s)下高速喷射微米级单分散液滴(>10⁷ 个液滴/秒)。这与液体射流的瑞利 - Plateau 不稳定性形成鲜明对比,后者每次仅喷射一个液滴。在 2 至 1 兆赫兹驱动频率下测量的液滴直径范围为 2.2 至 4.6μm,落在肺部药物递送的最佳粒径范围内。