Suppr超能文献

非胶原蛋白基因突变所致成骨不全症:骨形成生物学的启示

Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation.

作者信息

Marini Joan C, Reich Adi, Smith Simone M

机构信息

Bone and Extracellular Matrix Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Curr Opin Pediatr. 2014 Aug;26(4):500-7. doi: 10.1097/MOP.0000000000000117.

Abstract

PURPOSE OF REVIEW

Osteogenesis imperfecta or 'brittle bone disease' has mainly been considered a bone disorder caused by collagen mutations. Within the last decade, however, a surge of genetic discoveries has created a new paradigm for osteogenesis imperfecta as a collagen-related disorder, where most cases are due to autosomal dominant type I collagen defects, while rare, mostly recessive, forms are due to defects in genes whose protein products interact with collagen protein. This review is both timely and relevant in outlining the genesis, development, and future of this paradigm shift in the understanding of osteogenesis imperfecta.

RECENT FINDINGS

Bone-restricted interferon-induced transmembrane (IFITM)-like protein (BRIL) and pigment epithelium-derived factor (PEDF) defects cause types V and VI osteogenesis imperfecta via defective bone mineralization, while defects in cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1), and cyclophilin B (CYPB) cause types VII-IX osteogenesis imperfecta via defective collagen post-translational modification. Heat shock protein 47 (HSP47) and FK506-binding protein-65 (FKBP65) defects cause types X and XI osteogenesis imperfecta via aberrant collagen crosslinking, folding, and chaperoning, while defects in SP7 transcription factor, wingless-type MMTV integration site family member 1 (WNT1), trimeric intracellular cation channel type b (TRIC-B), and old astrocyte specifically induced substance (OASIS) disrupt osteoblast development. Finally, absence of the type I collagen C-propeptidase bone morphogenetic protein 1 (BMP1) causes type XII osteogenesis imperfecta due to altered collagen maturation/processing.

SUMMARY

Identification of these multiple causative defects has provided crucial information for accurate genetic counseling, inspired a recently proposed functional grouping of osteogenesis imperfecta types by shared mechanism to simplify current nosology, and has prodded investigations into common pathways in osteogenesis imperfecta. Such investigations could yield critical information on cellular and bone tissue mechanisms and translate to new mechanistic insight into clinical therapies for patients.

摘要

综述目的

成骨不全症或“脆骨病”主要被认为是一种由胶原蛋白突变引起的骨骼疾病。然而,在过去十年中,大量的基因发现为成骨不全症创造了一种新的范式,即作为一种与胶原蛋白相关的疾病,其中大多数病例是由于常染色体显性I型胶原蛋白缺陷,而罕见的、大多为隐性的形式则是由于其蛋白质产物与胶原蛋白相互作用的基因缺陷所致。这篇综述对于概述这种在成骨不全症理解上的范式转变的起源、发展及未来而言,既及时又具有相关性。

最新发现

骨限制性干扰素诱导跨膜(IFITM)样蛋白(BRIL)和色素上皮衍生因子(PEDF)缺陷通过骨矿化缺陷导致V型和VI型成骨不全症,而软骨相关蛋白(CRTAP)、脯氨酰3-羟化酶1(P3H1)和亲环蛋白B(CYPB)缺陷通过胶原蛋白翻译后修饰缺陷导致VII-IX型成骨不全症。热休克蛋白47(HSP47)和FK506结合蛋白65(FKBP65)缺陷通过异常的胶原蛋白交联、折叠和伴侣作用导致X型和XI型成骨不全症,而SP7转录因子、无翅型MMTV整合位点家族成员1(WNT1)、三聚体细胞内阳离子通道b型(TRIC-B)和老年星形胶质细胞特异性诱导物质(OASIS)缺陷会破坏成骨细胞发育。最后,I型胶原蛋白C-前肽酶骨形态发生蛋白1(BMP1)的缺失由于胶原蛋白成熟/加工改变导致XII型成骨不全症。

总结

这些多种致病缺陷的鉴定为准确的遗传咨询提供了关键信息,激发了最近提出的按共同机制对成骨不全症类型进行功能分组以简化当前疾病分类学的方法,并推动了对成骨不全症常见途径的研究。此类研究可能会产生有关细胞和骨组织机制的关键信息,并转化为对患者临床治疗的新机制性见解。

相似文献

1
Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation.
Curr Opin Pediatr. 2014 Aug;26(4):500-7. doi: 10.1097/MOP.0000000000000117.
3
Null mutations in LEPRE1 and CRTAP cause severe recessive osteogenesis imperfecta.
Cell Tissue Res. 2010 Jan;339(1):59-70. doi: 10.1007/s00441-009-0872-0. Epub 2009 Oct 28.
4
New genes in bone development: what's new in osteogenesis imperfecta.
J Clin Endocrinol Metab. 2013 Aug;98(8):3095-103. doi: 10.1210/jc.2013-1505. Epub 2013 Jun 14.
5
Deficiency of CRTAP in non-lethal recessive osteogenesis imperfecta reduces collagen deposition into matrix.
Clin Genet. 2012 Nov;82(5):453-9. doi: 10.1111/j.1399-0004.2011.01794.x. Epub 2011 Oct 19.
8
Differential effects of collagen prolyl 3-hydroxylation on skeletal tissues.
PLoS Genet. 2014 Jan;10(1):e1004121. doi: 10.1371/journal.pgen.1004121. Epub 2014 Jan 23.
9
CRTAP and LEPRE1 mutations in recessive osteogenesis imperfecta.
Hum Mutat. 2008 Dec;29(12):1435-42. doi: 10.1002/humu.20799.
10
Severe osteogenesis imperfecta in cyclophilin B-deficient mice.
PLoS Genet. 2009 Dec;5(12):e1000750. doi: 10.1371/journal.pgen.1000750. Epub 2009 Dec 4.

引用本文的文献

3
Pathogenetic therapeutic approaches for endocrine diseases based on antisense oligonucleotides and RNA-interference.
Front Endocrinol (Lausanne). 2025 Jan 29;16:1525373. doi: 10.3389/fendo.2025.1525373. eCollection 2025.
4
TMEM38B Gene Mutation Associated With Osteogenesis Imperfecta.
Cureus. 2024 Sep 9;16(9):e69021. doi: 10.7759/cureus.69021. eCollection 2024 Sep.
5
Genetic Anomalies in Pediatric Orthopedics: A Case Study of a New Rare Sporadic Mutation of Osteogenesis Imperfecta.
Cureus. 2024 Jul 19;16(7):e64909. doi: 10.7759/cureus.64909. eCollection 2024 Jul.
6
Update on the Genetics of Osteogenesis Imperfecta.
Calcif Tissue Int. 2024 Dec;115(6):891-914. doi: 10.1007/s00223-024-01266-5. Epub 2024 Aug 11.
7
Exome sequencing identified mutations in the WNT1 and COL1A2 genes in osteogenesis imperfecta cases.
Mol Biol Rep. 2024 Mar 27;51(1):449. doi: 10.1007/s11033-024-09326-7.
8
Emerging Landscape of Osteogenesis Imperfecta Pathogenesis and Therapeutic Approaches.
ACS Pharmacol Transl Sci. 2024 Jan 2;7(1):72-96. doi: 10.1021/acsptsci.3c00324. eCollection 2024 Jan 12.
9
The Regulatory Network of CREB3L1 and Its Roles in Physiological and Pathological Conditions.
Int J Med Sci. 2024 Jan 1;21(1):123-136. doi: 10.7150/ijms.90189. eCollection 2024.

本文引用的文献

1
Trimeric intracellular cation channels and sarcoplasmic/endoplasmic reticulum calcium homeostasis.
Circ Res. 2014 Feb 14;114(4):706-16. doi: 10.1161/CIRCRESAHA.114.301816.
3
Two mutations in IFITM5 causing distinct forms of osteogenesis imperfecta.
Am J Med Genet A. 2014 May;164A(5):1136-42. doi: 10.1002/ajmg.a.36409. Epub 2014 Jan 29.
5
6
New genes in bone development: what's new in osteogenesis imperfecta.
J Clin Endocrinol Metab. 2013 Aug;98(8):3095-103. doi: 10.1210/jc.2013-1505. Epub 2013 Jun 14.
7
Kuskokwim syndrome, a recessive congenital contracture disorder, extends the phenotype of FKBP10 mutations.
Hum Mutat. 2013 Sep;34(9):1279-88. doi: 10.1002/humu.22362. Epub 2013 Jul 8.
8
WNT1 mutation with recessive osteogenesis imperfecta and profound neurological phenotype.
J Med Genet. 2013 Jul;50(7):491-2. doi: 10.1136/jmedgenet-2013-101750. Epub 2013 May 24.
9
Osteogenesis imperfecta, an ever-expanding conundrum.
J Bone Miner Res. 2013 Jul;28(7):1519-22. doi: 10.1002/jbmr.1982.
10
WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta.
N Engl J Med. 2013 May 9;368(19):1809-16. doi: 10.1056/NEJMoa1215458.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验