Joint Quantum Institute, University of Maryland Department of Physics and National Institute of Standards and Technology, College Park, Maryland 20742, USA.
Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA.
Nature. 2014 Jul 10;511(7508):198-201. doi: 10.1038/nature13450.
The maximum speed with which information can propagate in a quantum many-body system directly affects how quickly disparate parts of the system can become correlated and how difficult the system will be to describe numerically. For systems with only short-range interactions, Lieb and Robinson derived a constant-velocity bound that limits correlations to within a linear effective 'light cone'. However, little is known about the propagation speed in systems with long-range interactions, because analytic solutions rarely exist and because the best long-range bound is too loose to accurately describe the relevant dynamical timescales for any known spin model. Here we apply a variable-range Ising spin chain Hamiltonian and a variable-range XY spin chain Hamiltonian to a far-from-equilibrium quantum many-body system and observe its time evolution. For several different interaction ranges, we determine the spatial and time-dependent correlations, extract the shape of the light cone and measure the velocity with which correlations propagate through the system. This work opens the possibility for studying a wide range of many-body dynamics in quantum systems that are otherwise intractable.
信息在量子多体系统中传播的最大速度直接影响系统不同部分变得相关的速度以及系统在数值上进行描述的难度。对于只有短程相互作用的系统,Lieb 和 Robinson 推导出了一个恒定速度的限制,将相关性限制在一个线性有效的“光锥”内。然而,对于具有长程相互作用的系统的传播速度知之甚少,因为解析解很少存在,而且最好的长程限制过于宽松,无法准确描述任何已知的自旋模型的相关动力学时间尺度。在这里,我们将一个可变范围的伊辛自旋链哈密顿量和一个可变范围的 XY 自旋链哈密顿量应用于远离平衡的量子多体系统,并观察其时间演化。对于几个不同的相互作用范围,我们确定了空间和时间相关的相关性,提取了光锥的形状,并测量了相关性通过系统传播的速度。这项工作为研究在其他方面难以处理的量子系统中的广泛的多体动力学开辟了可能性。