Ing Nancy H, Forrest David W, Riggs Penny K, Loux Shavahn, Love Charlie C, Brinsko Steven P, Varner Dickson D, Welsh Thomas H
Department of Animal Science, Texas A&M AgriLife Research, College Station, TX 77843, United States.
Department of Animal Science, Texas A&M AgriLife Research, College Station, TX 77843, United States.
J Steroid Biochem Mol Biol. 2014 Sep;143:451-9. doi: 10.1016/j.jsbmb.2014.07.003. Epub 2014 Jul 7.
In rodents, livestock and primate species, a single dose of the synthetic glucocorticoid dexamethasone acutely lowers testosterone biosynthesis. To determine the mechanism of decreased testosterone biosynthesis, stallions were treated with 0.1mg/kg dexamethasone 12h prior to castration. Dexamethasone decreased serum concentrations of testosterone by 60% compared to saline-treated control stallions. Transcriptome analyses (microarrays, northern blots and quantitative PCR) of testes discovered that dexamethasone treatment decreased concentrations of glucocorticoid receptor alpha (NR3C1), alpha actinin 4 (ACTN4), luteinizing hormone receptor (LHCGR), squalene epoxidase (SQLE), 24-dehydrocholesterol reductase (DHCR24), glutathione S-transferase A3 (GSTA3) and aromatase (CYP19A1) mRNAs. Dexamethasone increased concentrations of NFkB inhibitor A (NFKBIA) mRNA in testes. SQLE, DHCR24 and GSTA3 mRNAs were predominantly expressed by Leydig cells. In man and livestock, the GSTA3 protein provides a major 3-ketosteroid isomerase activity: conversion of Δ(5)-androstenedione to Δ(4)-androstenedione, the immediate precursor of testosterone. Consistent with the decrease in GSTA3 mRNA, dexamethasone decreased the 3-ketosteroid isomerase activity in testicular extracts. In conclusion, dexamethasone acutely decreased the expression of genes involved in hormone signaling (NR3C1, ACTN4 and LHCGR), cholesterol synthesis (SQLE and DHCR24) and steroidogenesis (GSTA3 and CYP19A1) along with testosterone production. This is the first report of dexamethasone down-regulating expression of the GSTA3 gene and a very late step in testosterone biosynthesis. Elucidation of the molecular mechanisms involved may lead to new approaches to modulate androgen regulation of the physiology of humans and livestock in health and disease.
在啮齿动物、家畜和灵长类动物中,单剂量的合成糖皮质激素地塞米松会急性降低睾酮的生物合成。为了确定睾酮生物合成减少的机制,在对种马进行去势手术前12小时,用0.1mg/kg地塞米松对其进行处理。与用生理盐水处理的对照种马相比,地塞米松使血清睾酮浓度降低了60%。对睾丸进行转录组分析(微阵列、Northern印迹和定量PCR)发现,地塞米松处理降低了糖皮质激素受体α(NR3C1)、α辅肌动蛋白4(ACTN4)、促黄体生成素受体(LHCGR)、角鲨烯环氧化酶(SQLE)、24-脱氢胆固醇还原酶(DHCR24)、谷胱甘肽S-转移酶A3(GSTA3)和芳香化酶(CYP19A1)的mRNA浓度。地塞米松增加了睾丸中NFkB抑制剂A(NFKBIA)mRNA的浓度。SQLE、DHCR24和GSTA3的mRNA主要由睾丸间质细胞表达。在人类和家畜中,GSTA3蛋白具有主要的3-酮类固醇异构酶活性:将Δ(5)-雄烯二酮转化为Δ(4)-雄烯二酮,即睾酮的直接前体。与GSTA3 mRNA的减少一致,地塞米松降低了睾丸提取物中的3-酮类固醇异构酶活性。总之,地塞米松急性降低了参与激素信号传导(NR3C1、ACTN4和LHCGR)、胆固醇合成(SQLE和DHCR24)和类固醇生成(GSTA3和CYP19A1)以及睾酮产生的基因的表达。这是地塞米松下调GSTA3基因表达以及睾酮生物合成中非常后期步骤的首次报道。对所涉及分子机制的阐明可能会带来新的方法,以调节人类和家畜在健康和疾病状态下雄激素对生理功能的调节。