From the Department of Radiology (C.I.S., S.H.K., E.S.L., D.H.L., E.J.H., J.M.L., J.K.H., B.I.C.), Institute of Radiation Medicine (S.H.K., J.M.L., J.K.H., B.I.C.), and Healthcare System Gangnam Center (S.Y.C.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 110-744, Korea.
Radiology. 2014 Dec;273(3):759-71. doi: 10.1148/radiol.14140192. Epub 2014 Jul 11.
To analyze the effect of a decrease in computed tomographic (CT) colonographic voltage, from 100 and 120 kVp to 80 kVp and reconstructed with filtered back projection ( FBP filtered back projection ), on radiation dose, image noise, and diagnostic performance in anthropomorphic phantoms and to assess the effect of iterative reconstruction ( IR iterative reconstruction ) algorithms on radiologists' performance for 80-kVp CT colonography.
Seven colon phantoms with 68 simulated polyps (≥6 mm) were scanned at three peak voltage settings (80, 100, 120 kVp) and 10 mAs. Images were reconstructed by using FBP filtered back projection , hybrid statistic-based IR iterative reconstruction , and knowledge-based IR iterative reconstruction algorithms. Effective radiation dose, image noise, and per-polyp sensitivity were recorded and compared by two reviewers with Friedman test, repeated measures analysis of variance, and McNemar test.
Median size-specific dose estimate and effective radiation dose of 80-kVp CT colonography was 0.231 mGy and 0.167 mSv, respectively, which was lower than with 100- and 120-kVp CT colonography, with significant difference between 80 and 120 kVp (P = .0005). Image noise (202.0 HU) at 80-kVp FBP filtered back projection CT colonography was significantly higher than at 100-kVp FBP filtered back projection (139.1 HU) and 120-kVp FBP filtered back projection (120.4 HU) (P < .0001). Per-polyp sensitivity (reviewer 1, 14.7% [10 of 68]; reviewer 2, 7.4% [five of 68]) at 80-kVp FBP filtered back projection was significantly lower than at 100-kVp FBP filtered back projection (reviewer 1, 57.4% [39 of 68]; reviewer 2, 39.7% [27 of 68]) and 120-kVp FBP filtered back projection (reviewer 1, 85.3% [58 of 68]; reviewer 2, 83.8% [57 of 68]) (P < .0001). With statistic-based IR iterative reconstruction , image noise at 80 kVp decreased significantly (52.8% [106.7 HU of 202.0 HU]) compared with that at 80-kVp FBP filtered back projection (P < .0001), but per-polyp sensitivity (reviewer 1, 79.4% [54 of 68]; reviewer 2, 66.2% [45 of 68]) at 80-kVp statistic-based IR iterative reconstruction remained significantly lower than at 100-kVp statistic-based IR iterative reconstruction (reviewer 1, 95.6% [65 of 68]; reviewer 2, 86.8% [59 of 68]) (P = .001) and 120-kVp statistic-based IR iterative reconstruction (reviewer 1, 98.5% [67 of 68]; reviewer 2, 89.7% [61 of 68]) (P < .001). For knowledge-based IR iterative reconstruction , per-polyp sensitivity at 80 kVp was improved to 98.5% (67 of 68) and 94.1% (64 of 68), not significantly different from that at 100 kVp (reviewer 1, 100% [68 of 68]; reviewer 2, 95.6% [65 of 68]) and 120 kVp (reviewer 1, 100% [68 of 68]; reviewer 2, 95.6% [65 of 68]) (P > .999).
A decrease in tube voltage to 80 kVp caused reduction in radiation dose (0.166 mSv) with deterioration in image noise and per-polyp sensitivity. By using a knowledge-based IR iterative reconstruction algorithm, radiologists' performance of 80-kVp CT colonography was acceptable and on par with that at 100- or 120-kVp CT colonography.
分析从 100kVp 和 120kVp 降低至 80kVp 并使用滤波反投影(filtered back projection,FBP)重建对体模中的辐射剂量、图像噪声和诊断性能的影响,并评估迭代重建(iterative reconstruction,IR)算法对 80kVp CT 结肠成像中放射科医生表现的影响。
在三个峰值电压设置(80kVp、100kVp 和 120kVp)和 10mA 下对 7 个结肠体模进行扫描,扫描时共模拟了 68 个大小≥6mm 的息肉。使用 FBP、基于统计的 IR 迭代重建和基于知识的 IR 迭代重建算法进行图像重建。由两位观察者记录并比较有效辐射剂量、图像噪声和每息肉灵敏度,采用 Friedman 检验、重复测量方差分析和 McNemar 检验进行比较。
80kVp CT 结肠成像的中位数大小特异性剂量估计值和有效辐射剂量分别为 0.231mGy 和 0.167mSv,分别低于 100kVp 和 120kVp CT 结肠成像,80kVp 和 120kVp 之间差异有统计学意义(P=0.0005)。80kVp FBP 重建的图像噪声(202.0HU)显著高于 100kVp FBP(139.1HU)和 120kVp FBP(120.4HU)(P<0.0001)。80kVp FBP 重建的每息肉灵敏度(观察者 1:14.7%[68 个息肉中的 10 个];观察者 2:7.4%[68 个息肉中的 5 个])显著低于 100kVp FBP(观察者 1:57.4%[68 个息肉中的 39 个];观察者 2:39.7%[68 个息肉中的 27 个])和 120kVp FBP(观察者 1:85.3%[68 个息肉中的 58 个];观察者 2:83.8%[68 个息肉中的 57 个])(P<0.0001)。与基于统计的 IR 迭代重建相比,80kVp 下的图像噪声显著降低(52.8%[202.0HU 的 106.7HU])(P<0.0001),但 80kVp 基于统计的 IR 迭代重建的每息肉灵敏度(观察者 1:79.4%[68 个息肉中的 54 个];观察者 2:66.2%[68 个息肉中的 45 个])仍显著低于 100kVp 基于统计的 IR 迭代重建(观察者 1:95.6%[68 个息肉中的 65 个];观察者 2:86.8%[68 个息肉中的 59 个])(P=0.001)和 120kVp 基于统计的 IR 迭代重建(观察者 1:98.5%[68 个息肉中的 67 个];观察者 2:89.7%[68 个息肉中的 61 个])(P<0.001)。对于基于知识的 IR 迭代重建,80kVp 下的每息肉灵敏度提高至 98.5%(67 个息肉中的 68 个)和 94.1%(64 个息肉中的 68 个),与 100kVp(观察者 1:100%[68 个息肉中的 68 个];观察者 2:95.6%[65 个息肉中的 68 个])和 120kVp(观察者 1:100%[68 个息肉中的 68 个];观察者 2:95.6%[65 个息肉中的 68 个])无显著差异(P>0.999)。
管电压降低至 80kVp 可降低辐射剂量(0.166mSv),但图像噪声和每息肉灵敏度会变差。使用基于知识的 IR 迭代重建算法后,放射科医生对 80kVp CT 结肠成像的表现可接受,与 100kVp 和 120kVp CT 结肠成像相当。