1] CSNSM, Université Paris-Sud and CNRS/IN2P3, Bâtiments 104 et 108, 91405 Orsay, France [2].
1] Lehrstuhl für Experimentelle Physik VII, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany [2].
Nat Commun. 2014 Jul 11;5:4326. doi: 10.1038/ncomms5326.
Spontaneous symmetry breaking in physical systems leads to salient phenomena at all scales, from the Higgs mechanism and the emergence of the mass of the elementary particles, to superconductivity and magnetism in solids. The hidden-order state arising below 17.5 K in URu2Si2 is a puzzling example of one of such phase transitions: its associated broken symmetry and gap structure have remained longstanding riddles. Here we directly image how, across the hidden-order transition, the electronic structure of URu2Si2 abruptly reconstructs. We observe an energy gap of 7 meV opening over 70% of a large diamond-like heavy-fermion Fermi surface, resulting in the formation of four small Fermi petals, and a change in the electronic periodicity from body-centred tetragonal to simple tetragonal. Our results explain the large entropy loss in the hidden-order phase, and the similarity between this phase and the high-pressure antiferromagnetic phase found in quantum-oscillation experiments.
物理系统中的自发对称破缺导致了在所有尺度上的显著现象,从希格斯机制和基本粒子质量的出现,到固体中的超导性和磁性。在 URu2Si2 中低于 17.5 K 出现的隐藏序状态是这种相变的一个令人费解的例子:其相关的对称破缺和能隙结构一直是长期存在的谜团。在这里,我们直接观察到 URu2Si2 的电子结构是如何在隐藏序转变中突然重构的。我们观察到,在一个大的类金刚石重费米子费米表面上,7 毫电子伏特的能隙突然打开,导致四个小的费米花瓣的形成,以及电子周期性从体心四方到简单四方的变化。我们的结果解释了隐藏序相中较大的熵损失,以及该相与量子振荡实验中发现的高压反铁磁相之间的相似性。