Department of Geoscience, University of Wisconsin-Madison , 1215 West Dayton Street, Madison, Wisconsin 53706, United States.
Environ Sci Technol. 2014 Aug 19;48(16):9197-204. doi: 10.1021/es5009856. Epub 2014 Jul 25.
Pliocene-aged reduced lacustrine sediment from below a subsurface redox transition zone at the 300 Area of the Hanford site (southeastern Washington) was used in a study of the geochemical response to introduction of oxygen or nitrate in the presence or absence of microbial activity. The sediments contained large quantities of reduced Fe in the form of Fe(II)-bearing phyllosilicates, together with smaller quantities of siderite and pyrite. A loss of ca. 50% of 0.5 M HCl-extractable Fe(II) [5-10 mmol Fe(II) L(-1)] and detectable generation of sulfate (ca. 0.2 mM, equivalent to 10% of the reduced inorganic sulfur pool) occurred in sterile aerobic reactors. In contrast, no systematic loss of Fe(II) or production of sulfate was observed in any of the other oxidant-amended sediment suspensions. Detectable Fe(II) accumulation and sulfate consumption occurred in non-sterile oxidant-free reactors. Together, these results indicate the potential for heterotrophic carbon metabolism in the reduced sediments, consistent with the proliferation of known heterotrophic taxa (e.g., Pseudomonadaceae, Burkholderiaceae, and Clostridiaceae) inferred from 16S rRNA gene pyrosequencing. Microbial carbon oxidation by heterotrophic communities is likely to play an important role in maintaining the redox boundary in situ, i.e., by modulating the impact of downward oxidant transport on Fe/S redox speciation. Diffusion-reaction simulations of oxygen and nitrate consumption coupled to solid-phase organic carbon oxidation indicate that heterotrophic consumption of oxidants could maintain the redox boundary at its current position over millennial time scales.
来自汉福德场地(华盛顿东南部)300 区地下氧化还原过渡带以下的上新世时期减少的湖泊沉积物,被用于研究在存在或不存在微生物活动的情况下,引入氧气或硝酸盐对地球化学的响应。这些沉积物含有大量以含亚铁的层状硅酸盐形式存在的还原态铁,以及少量菱铁矿和黄铁矿。在无菌有氧反应器中,约 50%的 0.5 M HCl 可提取的 Fe(II)([5-10 mmol Fe(II) L(-1)])和可检测到的硫酸盐生成(约 0.2 mM,相当于还原无机硫库的 10%)消失。相比之下,在任何其他氧化剂添加的沉积物悬浮液中都没有观察到系统的 Fe(II)损失或硫酸盐生成。在无氧化剂的非无菌反应器中,可检测到 Fe(II)积累和硫酸盐消耗。这些结果共同表明,在还原沉积物中存在异养碳代谢的潜力,这与从 16S rRNA 基因焦磷酸测序推断出的已知异养类群(如假单胞菌科、伯克霍尔德菌科和梭菌科)的增殖一致。异养群落的微生物碳氧化可能在原位维持氧化还原边界方面发挥重要作用,即通过调节向下氧化剂运输对 Fe/S 氧化还原形态的影响。与固相有机碳氧化偶联的氧气和硝酸盐消耗的扩散反应模拟表明,氧化剂的异养消耗可以在千年时间尺度内将氧化还原边界维持在当前位置。