Suppr超能文献

微生物在地下氧化还原过渡带的矿物定殖

Microbial mineral colonization across a subsurface redox transition zone.

作者信息

Converse Brandon J, McKinley James P, Resch Charles T, Roden Eric E

机构信息

Department of Geoscience, University of Wisconsin-Madison Madison, WI, USA.

Pacific Northwest National Laboratory, Richmond WA, USA.

出版信息

Front Microbiol. 2015 Aug 28;6:858. doi: 10.3389/fmicb.2015.00858. eCollection 2015.

Abstract

This study employed 16S rRNA gene amplicon pyrosequencing to examine the hypothesis that chemolithotrophic Fe(II)-oxidizing bacteria (FeOB) would preferentially colonize the Fe(II)-bearing mineral biotite compared to quartz sand when the minerals were incubated in situ within a subsurface redox transition zone (RTZ) at the Hanford 300 Area site in Richland, WA, USA. The work was motivated by the recently documented presence of neutral-pH chemolithotrophic FeOB capable of oxidizing structural Fe(II) in primary silicate and secondary phyllosilicate minerals in 300 Area sediments and groundwater (Benzine et al., 2013). Sterilized portions of sand+biotite or sand alone were incubated in situ for 5 months within a multilevel sampling (MLS) apparatus that spanned a ca. 2-m interval across the RTZ in two separate groundwater wells. Parallel MLS measurements of aqueous geochemical species were performed prior to deployment of the minerals. Contrary to expectations, the 16S rRNA gene libraries showed no significant difference in microbial communities that colonized the sand+biotite vs. sand-only deployments. Both mineral-associated and groundwater communities were dominated by heterotrophic taxa, with organisms from the Pseudomonadaceae accounting for up to 70% of all reads from the colonized minerals. These results are consistent with previous results indicating the capacity for heterotrophic metabolism (including anaerobic metabolism below the RTZ) as well as the predominance of heterotrophic taxa within 300 Area sediments and groundwater. Although heterotrophic organisms clearly dominated the colonized minerals, several putative lithotrophic (NH4 (+), H2, Fe(II), and HS(-) oxidizing) taxa were detected in significant abundance above and within the RTZ. Such organisms may play a role in the coupling of anaerobic microbial metabolism to oxidative pathways with attendant impacts on elemental cycling and redox-sensitive contaminant behavior in the vicinity of the RTZ.

摘要

本研究采用16S rRNA基因扩增子焦磷酸测序技术,以检验以下假设:当在美国华盛顿州里奇兰市汉福德300区场地的地下氧化还原过渡带(RTZ)内原位孵育矿物时,与石英砂相比,化能自养型亚铁氧化细菌(FeOB)会优先定殖于含亚铁矿物黑云母上。这项工作的动机是最近有文献记载在300区沉积物和地下水中存在能够氧化原生硅酸盐和次生层状硅酸盐矿物中结构亚铁的中性pH化能自养型FeOB(Benzine等人,2013年)。将经过灭菌处理的沙子+黑云母或仅沙子部分在一个多级采样(MLS)装置中原位孵育5个月,该装置横跨两个独立地下水井中约2米的RTZ区间。在放置矿物之前,对水地球化学物种进行了平行的MLS测量。与预期相反,16S rRNA基因文库显示,定殖于沙子+黑云母与仅沙子放置物上的微生物群落没有显著差异。与矿物相关的群落和地下水群落均以异养类群为主,假单胞菌科的生物占定殖矿物所有读数的比例高达70%。这些结果与之前的结果一致,表明存在异养代谢能力(包括RTZ以下的厌氧代谢)以及300区沉积物和地下水中异养类群占主导地位。尽管异养生物显然在定殖矿物中占主导地位,但在RTZ上方和内部检测到了几种假定的自养型(氧化铵离子、氢气、亚铁和硫氢根离子)类群,且丰度较高。这类生物可能在厌氧微生物代谢与氧化途径的耦合中发挥作用,进而影响RTZ附近的元素循环和对氧化还原敏感的污染物行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead1/4551860/94565c2e6282/fmicb-06-00858-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验