Suppr超能文献

抗生素氯霉素的肾脏蛋白反应性与稳定性:结构与亲和力

Renal protein reactivity and stability of antibiotic amphenicols: structure and affinity.

作者信息

Ding Fei, Peng Wei, Peng Yu-Kui, Jiang Yu-Ting

机构信息

College of Food Science & Engineering, Northwest A&F University, Yangling 712100, China.

出版信息

Mol Biosyst. 2014 Oct;10(10):2509-16. doi: 10.1039/c4mb00220b.

Abstract

In the present work, the molecular recognition of the oldest active amphenicols by the most popular renal carrier, lysozyme, was deciphered by using fluorescence, circular dichroism (CD) and molecular modeling at the molecular scale. Steady state fluorescence data showed that the recognition of amphenicol by lysozyme yields a static type of fluorescence quenching. This corroborates time-resolved fluorescence results that lysozyme-amphenicol adduct formation has a moderate affinity of 10(4) M(-1), and the driving forces were found to be chiefly hydrogen bonds, hydrophobic interactions and π stacking. Far-UV CD spectra confirmed that the spatial structure of lysozyme was slightly changed with a distinct reduction of α-helices in the presence of amphenicol, suggesting partial destabilization of the protein. Furthermore, via the extrinsic 8-anilino-1-naphthalenesulfonic acid fluorescence spectral properties and molecular modeling, one could see that the amphenicol binding site was situated at the deep crevice on the protein surface, and the ligand was also near to several crucial amino acid residues, such as Trp-62, Trp-63 and Arg-73. Simultaneously, contrastive studies of protein-amphenicols revealed clearly that some substituting groups, e.g. nitryl in the molecular structure of ligands, may be vitally important for the recognition activity of amphenicols with lysozyme. Due to the connection of amphenicols with fatal detrimental effects and because lysozyme has been applied as a drug carrier for proximal tubular targeting, the discussion herein is necessary for rational antibiotic use, development of safe antibiotics and particularly a better appraisal of the risks associated with human exposure to toxic agrochemicals.

摘要

在本研究中,通过荧光、圆二色性(CD)和分子尺度的分子建模,解析了最常见的肾脏载体溶菌酶对最古老的活性氨苄青霉素类药物的分子识别。稳态荧光数据表明,溶菌酶对氨苄青霉素类药物的识别产生了静态荧光猝灭类型。这证实了时间分辨荧光结果,即溶菌酶 - 氨苄青霉素类药物加合物的形成具有10⁴ M⁻¹的中等亲和力,并且发现驱动力主要是氢键、疏水相互作用和π堆积。远紫外CD光谱证实,在存在氨苄青霉素类药物的情况下,溶菌酶的空间结构略有变化,α - 螺旋明显减少,表明蛋白质部分不稳定。此外,通过外在的8 - 苯胺基 - 1 - 萘磺酸荧光光谱特性和分子建模,可以看出氨苄青霉素类药物的结合位点位于蛋白质表面的深裂缝处,并且配体也靠近几个关键氨基酸残基,如Trp - 62、Trp - 63和Arg - 73。同时,蛋白质 - 氨苄青霉素类药物的对比研究清楚地表明,一些取代基,例如配体分子结构中的硝基,可能对氨苄青霉素类药物与溶菌酶的识别活性至关重要。由于氨苄青霉素类药物与致命的有害影响有关,并且由于溶菌酶已被用作近端肾小管靶向的药物载体,因此本文的讨论对于合理使用抗生素、开发安全抗生素以及特别是更好地评估人类接触有毒农用化学品相关的风险是必要的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验