McKetta Department of Chemical Engineering and Department of Chemistry, Center for Nano and Molecular Science and Technology, Texas Materials Institute, and Center for Electrochemistry, University of Texas at Austin , Austin, Texas 78712, United States.
J Am Chem Soc. 2014 Aug 6;136(31):11070-8. doi: 10.1021/ja505192v. Epub 2014 Jul 25.
Pd-Au catalysts have shown exceptional performance for selective hydrogen production via HCOOH decomposition, a promising alternative to solve issues associated with hydrogen storage and distribution. In this study, we utilized temperature-programmed desorption (TPD) and reactive molecular beam scattering (RMBS) in an attempt to unravel the factors governing the catalytic properties of Pd-Au bimetallic surfaces for HCOOH decomposition. Our results show that Pd atoms at the Pd-Au surface are responsible for activating HCOOH molecules; however, the selectivity of the reaction is dictated by the identity of the surface metal atoms adjacent to the Pd atoms. Pd atoms that reside at Pd-Au interface sites tend to favor dehydrogenation of HCOOH, whereas Pd atoms in Pd(111)-like sites, which lack neighboring Au atoms, favor dehydration of HCOOH. These observations suggest that the reactivity and selectivity of HCOOH decomposition on Pd-Au catalysts can be tailored by controlling the arrangement of surface Pd and Au atoms. The findings in this study may prove informative for rational design of Pd-Au catalysts for associated reactions including selective HCOOH decomposition for hydrogen production and electro-oxidation of HCOOH in the direct formic acid fuel cell.
Pd-Au 催化剂在通过 HCOOH 分解选择性生产氢气方面表现出了优异的性能,这是一种有前途的解决氢气储存和分配问题的方法。在这项研究中,我们利用程序升温脱附(TPD)和反应分子束散射(RMBS)技术,试图揭示 Pd-Au 双金属表面对 HCOOH 分解的催化性能的影响因素。我们的结果表明,Pd-Au 表面上的 Pd 原子负责激活 HCOOH 分子,但反应的选择性取决于紧邻 Pd 原子的表面金属原子的性质。位于 Pd-Au 界面位置的 Pd 原子有利于 HCOOH 的脱氢反应,而缺乏相邻 Au 原子的 Pd(111)样位上的 Pd 原子则有利于 HCOOH 的脱水反应。这些观察结果表明,通过控制表面 Pd 和 Au 原子的排列,可以调节 HCOOH 在 Pd-Au 催化剂上的分解的反应性和选择性。本研究的结果可能为相关反应中 Pd-Au 催化剂的合理设计提供信息,包括用于生产氢气的选择性 HCOOH 分解以及直接甲酸燃料电池中 HCOOH 的电氧化。