Vivian Smith Department of Neurosurgery, Univ. of Texas Medical School at Houston, 6431 Fannin Street, Suite G.550D, Houston, TX 77030, USA.
Scientific and Statistical Computing Core, NIMH/NIH/DHHS, 9000 Rockville Pike, Bethesda, MD 20892, USA.
Neuroimage. 2014 Nov 1;101:215-24. doi: 10.1016/j.neuroimage.2014.07.006. Epub 2014 Jul 12.
Electrocorticography (ECoG) in humans yields data with unmatched spatio-temporal resolution that provides novel insights into cognitive operations. However, the broader application of ECoG has been confounded by difficulties in accurately depicting individual data and performing statistically valid population-level analyses. To overcome these limitations, we developed methods for accurately registering ECoG data to individual cortical topology. We integrated this technique with surface-based co-registration and a mixed-effects multilevel analysis (MEMA) to control for variable cortical surface anatomy and sparse coverage across patients, as well as intra- and inter-subject variability. We applied this surface-based MEMA (SB-MEMA) technique to a face-recognition task dataset (n=22). Compared against existing techniques, SB-MEMA yielded results much more consistent with individual data and with meta-analyses of face-specific activation studies. We anticipate that SB-MEMA will greatly expand the role of ECoG in studies of human cognition, and will enable the generation of population-level brain activity maps and accurate multimodal comparisons.
脑皮层电图(ECoG)在人类中产生的数据具有无与伦比的时空分辨率,为认知操作提供了新的见解。然而,ECoG 的更广泛应用受到了准确描述个体数据和进行具有统计学意义的群体水平分析的困难的阻碍。为了克服这些限制,我们开发了将 ECoG 数据准确地配准到个体皮质拓扑结构的方法。我们将这项技术与基于表面的配准和混合效应多级分析(MEMA)相结合,以控制患者之间的皮质表面解剖结构的变化和稀疏覆盖,以及个体内和个体间的变异性。我们将基于表面的 MEMA(SB-MEMA)技术应用于人脸识别任务数据集(n=22)。与现有技术相比,SB-MEMA 的结果与个体数据以及针对特定于面部的激活研究的荟萃分析更为一致。我们预计,SB-MEMA 将极大地扩展 ECoG 在人类认知研究中的作用,并能够生成群体水平的大脑活动图和准确的多模态比较。