Suppr超能文献

薄片的最优游动

Optimal swimming of a sheet.

作者信息

Montenegro-Johnson Thomas D, Lauga Eric

机构信息

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):060701. doi: 10.1103/PhysRevE.89.060701. Epub 2014 Jun 19.

Abstract

Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

摘要

在微观尺度下,推进通常是通过沿着称为鞭毛的毛发状细胞器传播行波来实现的。泰勒的二维游动薄片模型经常被用来深入了解鞭毛推进问题。我们通过数值方法推导出二维游动薄片的大振幅波形,该波形能产生最佳的流体动力效率:游动速度的平方与薄片对流体做功速率的比值。使用边界元方法,我们表明最优波形是前后对称的正则化尖点,其效率比最优正弦波高25%。这种最优二维形状是平滑的,在性质上不同于莱特希尔最优三维鞭毛的扭结形式,小振幅理论无法预测,也不同于主动弹性细丝的平滑圆弧形形状。

相似文献

1
Optimal swimming of a sheet.薄片的最优游动
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):060701. doi: 10.1103/PhysRevE.89.060701. Epub 2014 Jun 19.
2
Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study.利用表面行波的低雷诺数游泳者:分析与实验研究。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066304. doi: 10.1103/PhysRevE.85.066304. Epub 2012 Jun 5.
4
Speed of a swimming sheet in Newtonian and viscoelastic fluids.游泳薄片在牛顿流体和粘弹性流体中的速度。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):013015. doi: 10.1103/PhysRevE.87.013015. Epub 2013 Jan 17.
5
Low-Reynolds-number swimming in viscous two-phase fluids.在粘性两相流体中进行低雷诺数游泳。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 2):036304. doi: 10.1103/PhysRevE.85.036304. Epub 2012 Mar 15.
6
The equation of motion for sperm flagella.精子鞭毛的运动方程。
Biophys J. 1978 Aug;23(2):177-206. doi: 10.1016/S0006-3495(78)85442-3.
7
A study of bacterial flagellar bundling.一项关于细菌鞭毛成束的研究。
Bull Math Biol. 2005 Jan;67(1):137-68. doi: 10.1016/j.bulm.2004.06.006.
9
Fluid mechanics of swimming bacteria with multiple flagella.具有多条鞭毛的游动细菌的流体力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):042704. doi: 10.1103/PhysRevE.89.042704. Epub 2014 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验