Diehl H W, Grüneberg Daniel, Hasenbusch Martin, Hucht Alfred, Rutkevich Sergei B, Schmidt Felix M
Fakultät für Physik, Universität Duisburg-Essen, D-47048 Duisburg, Germany.
Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062123. doi: 10.1103/PhysRevE.89.062123. Epub 2014 Jun 16.
The classical n-vector ϕ{4} model with O(n) symmetrical Hamiltonian H is considered in a ∞{2}×L slab geometry bounded by a pair of parallel free surface planes at separation L. Standard quadratic boundary terms implying Robin boundary conditions are included in H. The temperature-dependent scaling functions of the excess free energy and the thermodynamic Casimir force are computed in the large-n limit for temperatures T at, above, and below the bulk critical temperature T_{c}. Their n=∞ limits can be expressed exactly in terms of the spectrum and eigenfunctions of a self-consistent one-dimensional Schrödinger equation. This equation is solved by numerical means for two distinct discretized versions of the model: in the first ("model A"), only the coordinate z across the slab is discretized and the integrations over momenta conjugate to the lateral coordinates are regularized dimensionally; in the second ("model B"), a simple cubic lattice with periodic boundary conditions along the lateral directions is used. Renormalization-group ideas are invoked to show that, in addition to corrections to scaling ∝L{-1}, anomalous ones ∝L{-1}lnL should occur. They can be considerably decreased by taking an appropriate g→∞ (T_{c}→∞) limit of the ϕ{4} interaction constant g. Depending on the model A or B, they can be absorbed completely or to a large extent in an effective thickness L_{eff}=L+δL. Excellent data collapses and consistent high-precision results for both models are obtained. The approach to the low-temperature Goldstone values of the scaling functions is shown to involve logarithmic anomalies. The scaling functions exhibit all qualitative features seen in experiments on the thinning of wetting layers of {4}He and Monte Carlo simulations of XY models, including a pronounced minimum of the Casimir force below T_{c}. The results are in conformity with various analytically known exact properties of the scaling functions.
考虑具有(O(n))对称哈密顿量(H)的经典(n)矢量(\phi^4)模型,其处于由一对间距为(L)的平行自由表面平面界定的(\infty^2\times L)平板几何结构中。哈密顿量(H)包含暗示罗宾边界条件的标准二次边界项。在大(n)极限下,针对高于、低于和等于体临界温度(T_c)的温度(T),计算了过量自由能和热力学卡西米尔力的温度相关标度函数。它们在(n = \infty)时的极限可以根据自洽一维薛定谔方程的谱和本征函数精确表示。通过数值方法求解该方程用于模型的两个不同离散版本:在第一个(“模型A”)中,仅平板厚度方向的坐标(z)被离散化,并且对与横向坐标共轭的动量的积分进行维度正规化;在第二个(“模型B”)中,使用沿横向方向具有周期性边界条件的简单立方晶格。调用重整化群思想表明,除了与(L^{-1})成比例的标度修正外,还应出现与(L^{-1}\ln L)成比例的反常修正。通过对(\phi^4)相互作用常数(g)取适当的(g \to \infty)((T_c \to \infty))极限,可以显著减小这些修正。根据模型A或B,它们可以完全或在很大程度上被吸收到有效厚度(L_{eff} = L + \delta L)中。获得了两个模型的出色数据塌缩和一致的高精度结果。标度函数趋近低温戈德斯通值的过程显示涉及对数反常。标度函数展现出在(^4He)润湿层变薄实验和XY模型的蒙特卡罗模拟中看到的所有定性特征,包括低于(T_c)时卡西米尔力的明显最小值。结果与标度函数的各种已知解析精确性质一致。