Suppr超能文献

基于矩阵分解技术的阿尔茨海默病动态调控网络重建

Dynamic regulatory network reconstruction for Alzheimer's disease based on matrix decomposition techniques.

作者信息

Kong Wei, Mou Xiaoyang, Zhi Xing, Zhang Xin, Yang Yang

机构信息

Information Engineering College, Shanghai Maritime University, Shanghai 201306, China.

DNJ Pharma and Rowan University, NJ 08028, USA.

出版信息

Comput Math Methods Med. 2014;2014:891761. doi: 10.1155/2014/891761. Epub 2014 Jun 15.

Abstract

Alzheimer's disease (AD) is the most common form of dementia and leads to irreversible neurodegenerative damage of the brain. Finding the dynamic responses of genes, signaling proteins, transcription factor (TF) activities, and regulatory networks of the progressively deteriorative progress of AD would represent a significant advance in discovering the pathogenesis of AD. However, the high throughput technologies of measuring TF activities are not yet available on a genome-wide scale. In this study, based on DNA microarray gene expression data and a priori information of TFs, network component analysis (NCA) algorithm is applied to determining the TF activities and regulatory influences on TGs of incipient, moderate, and severe AD. Based on that, the dynamical gene regulatory networks of the deteriorative courses of AD were reconstructed. To select significant genes which are differentially expressed in different courses of AD, independent component analysis (ICA), which is better than the traditional clustering methods and can successfully group one gene in different meaningful biological processes, was used. The molecular biological analysis showed that the changes of TF activities and interactions of signaling proteins in mitosis, cell cycle, immune response, and inflammation play an important role in the deterioration of AD.

摘要

阿尔茨海默病(AD)是最常见的痴呆形式,会导致大脑不可逆转的神经退行性损伤。发现AD进行性恶化过程中基因、信号蛋白、转录因子(TF)活性及调控网络的动态反应,将是AD发病机制研究的重大进展。然而,全基因组规模测量TF活性的高通量技术尚不可用。本研究基于DNA微阵列基因表达数据和TF的先验信息,应用网络成分分析(NCA)算法来确定早期、中度和重度AD中TF的活性及其对靶基因(TG)的调控影响。在此基础上,重建了AD恶化过程的动态基因调控网络。为了筛选出在AD不同病程中差异表达的重要基因,采用了独立成分分析(ICA),它比传统聚类方法更优,能成功地将一个基因归类到不同的有意义生物学过程中。分子生物学分析表明,有丝分裂、细胞周期、免疫反应和炎症中TF活性的变化以及信号蛋白的相互作用在AD的恶化过程中起重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82f1/4082865/eb4622d36086/CMMM2014-891761.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验