Dash Bhagirathi, Li Ming D, Lukas Ronald J
From the Department of Psychiatry and Neurobehavioral Sciences, School of Medicine, University of Virginia, Charlottesville, Virginia 22911 and.
Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013
J Biol Chem. 2014 Oct 10;289(41):28338-51. doi: 10.1074/jbc.M114.566018. Epub 2014 Jul 15.
Functional heterologous expression of naturally expressed mouse α6*-nicotinic acetylcholine receptors (mα6*-nAChRs; where "" indicates the presence of additional subunits) has been difficult. Here we expressed and characterized wild-type (WT), gain-of-function, chimeric, or gain-of-function chimeric nAChR subunits, sometimes as hybrid nAChRs containing both human (h) and mouse (m) subunits, in Xenopus oocytes. Hybrid mα6mβ4hβ3- (∼ 5-8-fold) or WT mα6mβ4mβ3-nAChRs (∼ 2-fold) yielded higher function than mα6mβ4-nAChRs. Function was not detected when mα6 and mβ2 subunits were expressed together or in the additional presence of hβ3 or mβ3 subunits. However, function emerged upon expression of mα6mβ2mβ3(V9'S)-nAChRs containing β3 subunits having gain-of-function V9'S (valine to serine at the 9'-position) mutations in transmembrane domain II and was further elevated 9-fold when hβ3(V9'S) subunits were substituted for mβ3(V9'S) subunits. Studies involving WT or gain-of-function chimeric mouse/human β3 subunits narrowed the search for domains that influence functional expression of mα6-nAChRs. Using hβ3 subunits as templates for site-directed mutagenesis studies, substitution with mβ3 subunit residues in extracellular N-terminal domain loops "C" (Glu(221) and Phe(223)), "E" (Ser(144) and Ser(148)), and "β2-β3" (Gln(94) and Glu(101)) increased function of mα6mβ2*- (∼ 2-3-fold) or mα6mβ4* (∼ 2-4-fold)-nAChRs. EC50 values for nicotine acting at mα6mβ4*-nAChR were unaffected by β3 subunit residue substitutions in loop C or E. Thus, amino acid residues located in primary (loop C) or complementary (loops β2-β3 and E) interfaces of β3 subunits are some of the molecular impediments for functional expression of mα6mβ2β3- or mα6mβ4β3-nAChRs.
天然表达的小鼠α6* - 烟碱型乙酰胆碱受体(mα6* - nAChRs;其中“”表示存在额外的亚基)的功能性异源表达一直很困难。在这里,我们在非洲爪蟾卵母细胞中表达并表征了野生型(WT)、功能增强型、嵌合型或功能增强型嵌合nAChR亚基,有时作为包含人类(h)和小鼠(m)亚基的杂交nAChRs。杂交的mα6mβ4hβ3 - (约5 - 8倍)或WT mα6mβ4mβ3 - nAChRs(约2倍)产生的功能高于mα6mβ4 - nAChRs。当mα6和mβ2亚基一起表达或在hβ3或mβ3亚基存在的情况下表达时,未检测到功能。然而,当表达含有跨膜结构域II中具有功能增强型V9'S(9'位缬氨酸突变为丝氨酸)突变的β3亚基的mα6mβ2mβ3(V9'S) - nAChRs时出现了功能,并且当用hβ3(V9'S)亚基替代mβ3(V9'S)亚基时功能进一步提高了9倍。涉及WT或功能增强型嵌合小鼠/人类β3亚基的研究缩小了对影响mα6 - nAChRs功能表达的结构域的搜索范围。使用hβ3亚基作为定点诱变研究的模板,用mβ3亚基残基替代细胞外N末端结构域环“C”(Glu(221)和Phe(223))、“E”(Ser(144)和Ser(148))以及“β2 - β3”(Gln(94)和Glu(101))中的残基,增加了mα6mβ2* - (约2 - 3倍)或mα6mβ4*(约2 - 4倍) - nAChRs的功能。作用于mα6mβ4* - nAChR的尼古丁的EC50值不受环C或E中β3亚基残基替代的影响。因此,位于β3亚基的主要(环C)或互补(环β2 - β3和E)界面的氨基酸残基是mα6mβ2β3 - 或mα6mβ4β3 - nAChRs功能表达的一些分子障碍。