Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013.
Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013.
J Biol Chem. 2011 Nov 4;286(44):37905-37918. doi: 10.1074/jbc.M111.264044. Epub 2011 Aug 26.
To further the understanding of functional α6α5*-nicotinic acetylcholine receptors (nAChR; the asterisk () indicates known or possible presence of other subunits), we have heterologously expressed in oocytes different, mouse or human, nAChR subunit combinations. Coexpression with wild-type α5 subunits or chimeric α5/β3 subunits (in which the human α5 subunit N-terminal, extracellular domain is linked to the remaining domains of the human β3 subunit) almost completely abolishes the very small amount of function seen for α6β4-nAChR and does not induce function of α6β2*-nAChR. Coexpression with human α5(V9)'(S) subunits bearing a valine 290 to serine mutation in the 9' position of the second transmembrane domain does not rescue the function of α6β4*-nAChR or induce function of α6β2*-nAChR. However, coexpression with mutant chimeric α5/β3(V9)'(S) subunits has a gain-of-function effect (higher functional expression and agonist sensitivity and spontaneous opening inhibited by mecamylamine) on α6β4*-nAChR. Moreover, N143D + M145V mutations in the α6 subunit N-terminal domain enable α5/β3(V9)'(S) subunits to have a gain-of-function effect on α6β2*-nAChR. nAChR containing chimeric α6/α3 subunits plus either β2 or β4 subunits have some function that is modulated in the presence of α5 or α5/β3 subunits. Coexpression with α5/β3(V9)'(S) subunits has a gain-of-function effect more pronounced than that in the presence of α5(V9)'(S) subunits. Gain-of-function effects are dependent, sometimes subtly, on the nature and apparently the extracellular, cytoplasmic, and/or transmembrane domain topology of partner subunits. These studies yield insight into assembly of functional α6α5*-nAChR and provide tools for development of α6*-nAChR-selective ligands that could be important in the treatment of nicotine dependence, and perhaps other neurological diseases.
为了进一步了解功能性α6α5*-烟碱型乙酰胆碱受体(nAChR;星号()表示可能存在其他亚基),我们在卵母细胞中异源表达了不同的、小鼠或人类的 nAChR 亚基组合。与野生型α5 亚基或嵌合α5/β3 亚基(其中人类α5 亚基 N 端、细胞外结构域与人类β3 亚基的其余结构域相连)共表达几乎完全消除了α6β4-nAChR 所观察到的少量功能,并且不会诱导α6β2*-nAChR 的功能。与携带第二个跨膜结构域第 9 位缬氨酸 290 突变为丝氨酸的人类α5(V9)'(S)亚基共表达不能挽救α6β4*-nAChR 的功能或诱导α6β2*-nAChR 的功能。然而,与突变嵌合α5/β3(V9)'(S)亚基共表达对α6β4*-nAChR 具有功能获得效应(更高的功能表达和激动剂敏感性以及被美加仑胺抑制的自发开放)。此外,α6 亚基 N 端结构域中的 N143D + M145V 突变使α5/β3(V9)'(S)亚基对α6β2*-nAChR 具有功能获得效应。含有嵌合α6/α3 亚基加上β2 或β4 亚基的 nAChR 具有一些功能,这些功能在存在α5 或α5/β3 亚基时会被调节。与α5/β3(V9)'(S)亚基共表达具有比存在α5(V9)'(S)亚基更明显的功能获得效应。功能获得效应在一定程度上取决于伙伴亚基的性质,并且显然取决于细胞外、细胞质和/或跨膜结构域拓扑结构。这些研究为功能性α6α5*-nAChR 的组装提供了深入的了解,并为开发可能对尼古丁依赖症和其他神经疾病的治疗有重要意义的α6*-nAChR 选择性配体提供了工具。