Waggoner Center for Alcohol and Addiction Research, Institute of Neuroscience, Center for Learning and Memory, Center for Brain, Behavior, and Evolution, and Department of Neuroscience, The University of Texas at Austin, Texas 78712.
Waggoner Center for Alcohol and Addiction Research, Institute of Neuroscience, Center for Learning and Memory, Center for Brain, Behavior, and Evolution, and Department of Neuroscience, The University of Texas at Austin, Texas 78712
J Neurosci. 2014 Jul 16;34(29):9562-73. doi: 10.1523/JNEUROSCI.0838-14.2014.
Alcohol directly modulates the BK potassium channel to alter behaviors in species ranging from invertebrates to humans. In the nematode Caenorhabditis elegans, mutations that eliminate the BK channel, SLO-1, convey dramatic resistance to intoxication by ethanol. We hypothesized that certain conserved amino acids are critical for ethanol modulation, but not for basal channel function. To identify such residues, we screened C. elegans strains with different missense mutations in the SLO-1 channel. A strain with the SLO-1 missense mutation T381I in the RCK1 domain was highly resistant to intoxication. This mutation did not interfere with other BK channel-dependent behaviors, suggesting that the mutant channel retained normal in vivo function. Knock-in of wild-type versions of the worm or human BK channel rescued intoxication and other BK channel-dependent behaviors in a slo-1-null mutant background. In contrast, knock-in of the worm T381I or equivalent human T352I mutant BK channel selectively rescued BK channel-dependent behaviors while conveying resistance to intoxication. Single-channel patch-clamp recordings confirmed that the human BK channel engineered with the T352I missense mutation was insensitive to activation by ethanol, but otherwise had normal conductance, potassium selectivity, and only subtle differences in voltage dependence. Together, our behavioral and electrophysiological results demonstrate that the T352I mutation selectively disrupts ethanol modulation of the BK channel. The T352I mutation may alter a binding site for ethanol and/or interfere with ethanol-induced conformational changes that are critical for behavioral responses to ethanol.
酒精直接调节 BK 钾通道,改变从无脊椎动物到人类等各种物种的行为。在秀丽隐杆线虫中,消除 BK 通道 SLO-1 的突变赋予了对乙醇中毒的显著抗性。我们假设某些保守的氨基酸对于乙醇调节至关重要,但对于基础通道功能并非如此。为了鉴定这些残基,我们筛选了 SLO-1 通道中具有不同错义突变的秀丽隐杆线虫菌株。具有 RCK1 结构域中 SLO-1 错义突变 T381I 的菌株对中毒具有高度抗性。该突变不干扰其他 BK 通道依赖性行为,表明突变通道保留了正常的体内功能。野生型虫或人 BK 通道的敲入挽救了 slo-1 缺失突变体背景中的中毒和其他 BK 通道依赖性行为。相比之下,虫 T381I 或等效的人 T352I 突变 BK 通道的敲入选择性地挽救了 BK 通道依赖性行为,同时赋予对中毒的抗性。单通道膜片钳记录证实,工程化的具有 T352I 错义突变的人 BK 通道对乙醇的激活不敏感,但具有正常的电导、钾选择性,并且仅在电压依赖性方面存在细微差异。总之,我们的行为学和电生理学结果表明,T352I 突变选择性地破坏了 BK 通道对乙醇的调节。T352I 突变可能改变了乙醇的结合位点,和/或干扰了乙醇诱导的构象变化,这些变化对于对乙醇的行为反应至关重要。