Suppr超能文献

用于生物标志物检测的铂纳米颗粒与体积条形图芯片的集成。

Integration of platinum nanoparticles with a volumetric bar-chart chip for biomarker assays.

作者信息

Song Yujun, Xia Xuefeng, Wu Xifeng, Wang Ping, Qin Lidong

机构信息

Department of Nanomedicine, Houston Methodist Research Institute, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 6670 Bertener Avenue, Houston, TX 77030 (USA).

出版信息

Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12451-5. doi: 10.1002/anie.201404349. Epub 2014 Jul 17.

Abstract

Platinum nanoparticles (PtNPs) efficiently catalyze the transformation of H2 O2 into oxygen gas. However, owing to the lack of an efficient approach or device that can measure the produced oxygen gas, the catalytic reaction has never been used for diagnostic applications. Microfluidics technology provides a platform that meets these requirements. The volumetric bar-chart chip (V-Chip) volumetrically measures the production of oxygen gas by PtNPs and can be integrated with ELISA technology to provide visible and quantitative readouts without expensive instrumentation or complicated data processing. Herein we show that PtNPs outperform catalase with respect to stability at high H2 O2 concentrations or temperatures or in long-term reactions, and are resistant to most catalase inhibitors. We also show that the catalase-like activity of PtNPs can be used in combination with the V-Chip to sensitively and specifically detect cancer biomarkers both in serum and on the cell surface.

摘要

铂纳米颗粒(PtNPs)能高效催化过氧化氢转化为氧气。然而,由于缺乏一种能够测量所产生氧气的有效方法或装置,这种催化反应从未被用于诊断应用。微流控技术提供了一个满足这些要求的平台。体积柱状图芯片(V-Chip)能以体积方式测量PtNPs产生氧气的情况,并且可以与酶联免疫吸附测定(ELISA)技术相结合,无需昂贵的仪器设备或复杂的数据处理就能提供可视化和定量的读数。在此我们表明,在高过氧化氢浓度、高温或长期反应条件下,PtNPs在稳定性方面优于过氧化氢酶,并且对大多数过氧化氢酶抑制剂具有抗性。我们还表明,PtNPs的类过氧化氢酶活性可与V-Chip结合使用,以灵敏且特异性地检测血清和细胞表面的癌症生物标志物。

相似文献

1
Integration of platinum nanoparticles with a volumetric bar-chart chip for biomarker assays.
Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12451-5. doi: 10.1002/anie.201404349. Epub 2014 Jul 17.
2
A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays.
Biosens Bioelectron. 2016 Nov 15;85:777-784. doi: 10.1016/j.bios.2016.05.090. Epub 2016 May 31.
3
Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing.
Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12503-7. doi: 10.1002/anie.201405995. Epub 2014 Aug 11.
4
Multiplexed volumetric bar-chart chip for point-of-care diagnostics.
Nat Commun. 2012;3:1283. doi: 10.1038/ncomms2292.
5
Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead.
Anal Chem. 2014 Nov 18;86(22):11434-9. doi: 10.1021/ac503540q. Epub 2014 Nov 5.
9
Volumetric Bar-Chart Chips for Biosensing.
Methods Mol Biol. 2017;1570:105-115. doi: 10.1007/978-1-4939-6840-4_7.
10
CRISPR-Cas12a Coupled with Platinum Nanoreporter for Visual Quantification of SNVs on a Volumetric Bar-Chart Chip.
Anal Chem. 2019 Oct 1;91(19):12384-12391. doi: 10.1021/acs.analchem.9b02925. Epub 2019 Sep 10.

引用本文的文献

1
Development of an immunoassay lollipop using syringe-autoinjected visual distance readout for point-of-care testing.
Anal Bioanal Chem. 2025 Sep;417(22):5145-5154. doi: 10.1007/s00216-025-06039-z. Epub 2025 Jul 31.
2
Overview of Gas-Generating-Reaction-Based Immunoassays.
Biosensors (Basel). 2024 Nov 28;14(12):580. doi: 10.3390/bios14120580.
3
Catalase Detection via Membrane-Based Pressure Sensors.
Molecules. 2024 Mar 28;29(7):1506. doi: 10.3390/molecules29071506.
4
Magnetic iron oxide-based nanozymes: from synthesis to application.
Nanoscale Adv. 2024 Feb 19;6(6):1611-1642. doi: 10.1039/d3na00903c. eCollection 2024 Mar 12.
5
Microfluidic platforms integrated with nano-sensors for point-of-care bioanalysis.
Trends Analyt Chem. 2022 Dec;157. doi: 10.1016/j.trac.2022.116806. Epub 2022 Oct 29.
7
Rational Design and Biological Application of Antioxidant Nanozymes.
Front Chem. 2021 Feb 11;8:831. doi: 10.3389/fchem.2020.00831. eCollection 2020.
9
Quantitation of Femtomolar-Level Protein Biomarkers Using a Simple Microbubbling Digital Assay and Bright-Field Smartphone Imaging.
Angew Chem Int Ed Engl. 2019 Sep 23;58(39):13922-13928. doi: 10.1002/anie.201906856. Epub 2019 Aug 21.
10
Microfluidic device for the analysis of MDR cancerous cell-derived exosomes' response to nanotherapy.
Biomed Microdevices. 2019 Mar 25;21(2):35. doi: 10.1007/s10544-019-0381-1.

本文引用的文献

1
Point-of-care technologies for molecular diagnostics using a drop of blood.
Trends Biotechnol. 2014 Mar;32(3):132-9. doi: 10.1016/j.tibtech.2014.01.003. Epub 2014 Feb 11.
2
Mesenchymal-mode migration assay and antimetastatic drug screening with high-throughput microfluidic channel networks.
Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2344-8. doi: 10.1002/anie.201309885. Epub 2014 Jan 29.
3
A multistage volumetric bar chart chip for visualized quantification of DNA.
J Am Chem Soc. 2013 Nov 13;135(45):16785-8. doi: 10.1021/ja4085397. Epub 2013 Oct 29.
4
The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy.
Chemother Res Pract. 2012;2012:743193. doi: 10.1155/2012/743193. Epub 2012 Dec 20.
5
Multiplexed volumetric bar-chart chip for point-of-care diagnostics.
Nat Commun. 2012;3:1283. doi: 10.1038/ncomms2292.
7
Point of care diagnostics: status and future.
Anal Chem. 2012 Jan 17;84(2):487-515. doi: 10.1021/ac2030199. Epub 2011 Dec 21.
8
Colorimetric biosensing using smart materials.
Adv Mater. 2011 Oct 4;23(37):4215-36. doi: 10.1002/adma.201101853. Epub 2011 Jul 29.
10
Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles.
Biomaterials. 2011 Feb;32(6):1611-8. doi: 10.1016/j.biomaterials.2010.11.004. Epub 2010 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验