Suppr超能文献

可流动电极系统的原位分布式诊断:解决空间和时间限制。

In situ distributed diagnostics of flowable electrode systems: resolving spatial and temporal limitations.

作者信息

Dennison C R, Gogotsi Y, Kumbur E C

机构信息

Electrochemical Energy Systems Laboratory, Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA.

出版信息

Phys Chem Chem Phys. 2014 Sep 14;16(34):18241-52. doi: 10.1039/c4cp02820a.

Abstract

In this study, we have developed an in situ distributed diagnostics tool to investigate spatial and temporal effects in electrochemical systems based on flowable electrodes. Specifically, an experimental approach was developed that enables spatially-resolved voltage measurements to be obtained in situ, in real-time. To extract additional data from these distributed measurements, an experimentally-parameterized equivalent circuit model with a new 'flow capacitor' circuit element was developed to predict the distributions of various system parameters during operation. As a case study, this approach was applied to investigate the behavior of the suspension electrodes used in an electrochemical flow capacitor under flowing and static conditions. The volumetric capacitance is reduced from 15.6 F ml(-1) to 1.1 F ml(-1) under flowing conditions. Results indicate that the majority of the charging in suspension electrodes occurs within ∼750 μm of the current collectors during flow, which gives rise to significant state-of-charge gradients across the cell, as well as underutilization of the available active material. The underlying cause of this observation is attributed to the relatively high electrical resistance of the slurry coupled with a stratified charging regime and insufficient residence time. The observations highlight the need to develop more conductive slurries and to design cells with reduced charge transport lengths.

摘要

在本研究中,我们开发了一种原位分布式诊断工具,用于研究基于可流动电极的电化学系统中的空间和时间效应。具体而言,我们开发了一种实验方法,能够实时原位获取空间分辨的电压测量值。为了从这些分布式测量中提取更多数据,我们开发了一个带有新“流动电容器”电路元件的实验参数化等效电路模型,以预测运行期间各种系统参数的分布。作为一个案例研究,该方法被应用于研究电化学流动电容器中使用的悬浮电极在流动和静态条件下的行为。在流动条件下,体积电容从15.6 F ml(-1)降至1.1 F ml(-1)。结果表明,流动过程中悬浮电极的大部分充电发生在集流体约750μm范围内,这导致整个电池出现显著的充电状态梯度,以及可用活性材料的未充分利用。这一观察结果的根本原因归因于浆料相对较高的电阻,加上分层充电机制和停留时间不足。这些观察结果突出了开发导电性更高的浆料以及设计电荷传输长度更小的电池的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验