Torop Janno, Summer Faiza, Zadin Vahur, Koiranen Tuomas, Jänes Alar, Lust Enn, Aabloo Alvo
University of Tartu, Institute of Technology, IMS Lab, Nooruse 1, 50411, Tartu, Estonia.
Lappeenranta University of Technology, LUT Chemtech, Skinnarillankatu 34, 53850, Lappeenranta, Finland.
Eur Phys J E Soft Matter. 2019 Jan 21;42(1):8. doi: 10.1140/epje/i2019-11766-2.
The search for efficient energy storage devices has recently led to the introduction of a fluid electrode material employing electrochemical flow capacitors (EFC). Unlike the classical solid electrode film containing capacitors, where the electrode material is fixed to the current collectors and capacitance is therefore limited with an active surface area of porous electrode, the flow electrodes offer new design opportunities which enable fully continuous charging/discharging processes as well as easily scalable systems. Here we describe the successful incorporation of the carboxymethyl cellulose sodium salt (CMC-Na) assisted carbonaceous suspension electrode in aqueous media for the electrochemical flow capacitor concept and demonstrate the electrochemical charge storage in flowable electrodes using a cation conductive membrane as separator in a double-pipe flow-electrode module. Experimental results were combined with computer simulations (FEM) to specify limiting processes EFC charging. The flow-electrode slurry is based on 0.1 M NaSO, 3 wt% CMC-Na and activated carbon powder suspended in water. During continuous operation of the system, the capacitance of the flow electrode reached to 0.3 F/L providing the energy and current densities of 7 mWh/kg and 56 mW/L, respectively. Additionally, we report a 70% round trip efficiency calculated during charging and discharging of the cell between 0 V and +0.75 V, while applying the current density of 1.6 mA/kg. The double-pipe flow-electrode module is easily expandable for transportation of large volumes of electrode material.
最近,对高效储能装置的探索促使人们引入了一种采用电化学流动电容器(EFC)的流体电极材料。与传统的含电容器固体电极薄膜不同,在传统薄膜中电极材料固定在集流体上,因此电容受限于多孔电极的有效表面积,而流动电极提供了新的设计机会,能够实现完全连续的充电/放电过程以及易于扩展的系统。在此,我们描述了成功将羧甲基纤维素钠盐(CMC-Na)辅助的碳质悬浮电极引入水性介质用于电化学流动电容器概念,并在双管流动电极模块中使用阳离子导电膜作为隔膜,展示了可流动电极中的电化学电荷存储。实验结果与计算机模拟(有限元法)相结合,以确定EFC充电的限制过程。流动电极浆料基于0.1 M NaSO、3 wt% CMC-Na和悬浮在水中的活性炭粉末。在系统连续运行期间,流动电极的电容达到0.3 F/L,分别提供7 mWh/kg的能量密度和56 mW/L的电流密度。此外,我们报告了在电池于0 V至 +0.75 V之间充电和放电期间,在施加1.6 mA/kg的电流密度时计算得出的70%的往返效率。双管流动电极模块易于扩展,可用于输送大量电极材料。