Suppr超能文献

髓源性抑制细胞作为实验性自身免疫性重症肌无力的一种潜在治疗方法。

Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis.

作者信息

Li Yan, Tu Zhidan, Qian Shiguang, Fung John J, Markowitz Sanford D, Kusner Linda L, Kaminski Henry J, Lu Lina, Lin Feng

机构信息

Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195;

Department of Pathology, Case Western Reserve University, Cleveland, OH 44106;

出版信息

J Immunol. 2014 Sep 1;193(5):2127-34. doi: 10.4049/jimmunol.1400857. Epub 2014 Jul 23.

Abstract

We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T cell-dependent and B cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptor (AChR)-specific T cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 Abs inhibited the proliferation of these in vitro-activated B cells. Administering MDSCs into mice immunized with a T cell-independent Ag inhibited the Ag-specific Ab production in vivo. MDSCs directly inhibit B cells through multiple mechanisms, including PGE2, inducible NO synthase, and arginase. Interestingly, MDSC treatment in EAMG mice does not appear to significantly inhibit their immune response to a nonrelevant Ag, OVA. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T and B cell autoimmunity, leading to effective treatment of established EAMG, and that the MDSCs inhibit AChR-specific immune responses at least partially in an Ag-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis.

摘要

我们最近证明,肝星状细胞可诱导骨髓祖细胞分化为髓源性抑制细胞(MDSC)。在本研究中,我们发现,过继转移这些MDSC可有效逆转实验性自身免疫性重症肌无力(EAMG)的疾病进展,EAMG是一种由T细胞依赖性和B细胞介导的重症肌无力模型。除了疾病严重程度改善外,经MDSC治疗的EAMG小鼠还表现出乙酰胆碱受体(AChR)特异性T细胞反应受到抑制、血清抗AChR IgG水平降低以及神经肌肉接头处补体激活减少。将MDSC与由抗IgM或抗CD40抗体激活的B细胞共同孵育,可抑制这些体外激活的B细胞的增殖。将MDSC注射到用T细胞非依赖性抗原免疫的小鼠体内,可在体内抑制抗原特异性抗体的产生。MDSC通过多种机制直接抑制B细胞,包括前列腺素E2、诱导型一氧化氮合酶和精氨酸酶。有趣的是,EAMG小鼠的MDSC治疗似乎并未显著抑制其对无关抗原OVA的免疫反应。这些结果表明,肝星状细胞诱导的MDSC可同时抑制T细胞和B细胞自身免疫,从而有效治疗已建立的EAMG,并且MDSC至少部分以抗原特异性方式抑制AChR特异性免疫反应。这些数据表明,MDSC可进一步开发为治疗重症肌无力的新方法,甚至更广泛地用于治疗其他T细胞和B细胞参与发病机制的疾病。

相似文献

1
Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis.
J Immunol. 2014 Sep 1;193(5):2127-34. doi: 10.4049/jimmunol.1400857. Epub 2014 Jul 23.
3
The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis.
Cell Immunol. 2006 Jun;241(2):95-101. doi: 10.1016/j.cellimm.2006.08.005. Epub 2006 Sep 26.
4
Recombinant IgG2a Fc (M045) multimers effectively suppress experimental autoimmune myasthenia gravis.
J Autoimmun. 2014 Aug;52:64-73. doi: 10.1016/j.jaut.2013.12.014. Epub 2014 Jan 2.
5
Suppression of experimental myasthenia gravis by a B-cell epitope-free recombinant acetylcholine receptor.
Mol Immunol. 2008 Nov;46(1):192-201. doi: 10.1016/j.molimm.2008.08.264. Epub 2008 Sep 16.
6
Novel animal models of acetylcholine receptor antibody-related myasthenia gravis.
Ann N Y Acad Sci. 2012 Dec;1274:133-9. doi: 10.1111/j.1749-6632.2012.06773.x.
8
Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease.
J Leukoc Biol. 2015 Mar;97(3):573-82. doi: 10.1189/jlb.4A0314-139R. Epub 2015 Jan 12.
9
Characterization of peripheral blood acetylcholine receptor-binding B cells in experimental myasthenia gravis.
Cell Immunol. 2011;271(2):292-8. doi: 10.1016/j.cellimm.2011.07.007. Epub 2011 Jul 28.
10
MuSK induced experimental autoimmune myasthenia gravis does not require IgG1 antibody to MuSK.
J Neuroimmunol. 2016 Jun 15;295-296:84-92. doi: 10.1016/j.jneuroim.2016.04.003. Epub 2016 Apr 11.

引用本文的文献

1
Dynamic crosstalk between HSCs and liver microenvironment: multicellular interactions in the regulation of liver fibrosis.
Front Cell Dev Biol. 2025 Jul 21;13:1635763. doi: 10.3389/fcell.2025.1635763. eCollection 2025.
3
The Role of Myeloid-Derived Suppressor Cells in Multiple Sclerosis and Its Animal Model.
Aging Dis. 2024 May 7;15(3):1329-1343. doi: 10.14336/AD.2023.0323-1.
4
Modulation of T-cell function by myeloid-derived suppressor cells in hematological malignancies.
Front Cell Dev Biol. 2023 Apr 5;11:1129343. doi: 10.3389/fcell.2023.1129343. eCollection 2023.
5
Immune Modulation by Myeloid-Derived Suppressor Cells in Diabetic Kidney Disease.
Int J Mol Sci. 2022 Oct 31;23(21):13263. doi: 10.3390/ijms232113263.
6
Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation.
Front Immunol. 2022 Aug 30;13:933847. doi: 10.3389/fimmu.2022.933847. eCollection 2022.
7
Aging Affects the Role of Myeloid-Derived Suppressor Cells in Alloimmunity.
Front Immunol. 2022 Jul 6;13:917972. doi: 10.3389/fimmu.2022.917972. eCollection 2022.
8
Increased Frequency of Myeloid-Derived Suppressor Cells in Myasthenia Gravis After Immunotherapy.
Front Neurol. 2022 Jun 29;13:902384. doi: 10.3389/fneur.2022.902384. eCollection 2022.
9
Monocytic-Myeloid Derived Suppressor Cells Suppress T-Cell Responses in Recovered SARS CoV2-Infected Individuals.
Front Immunol. 2022 Jun 24;13:894543. doi: 10.3389/fimmu.2022.894543. eCollection 2022.
10
Myeloid-Derived Suppressor Cells in COVID-19: The Paradox of Good.
Front Immunol. 2022 Apr 27;13:842949. doi: 10.3389/fimmu.2022.842949. eCollection 2022.

本文引用的文献

2
The role of complement component 3 (C3) in differentiation of myeloid-derived suppressor cells.
Blood. 2013 Mar 7;121(10):1760-8. doi: 10.1182/blood-2012-06-440214. Epub 2013 Jan 8.
4
Rituximab in refractory and non-refractory myasthenia: a retrospective multicenter study.
Muscle Nerve. 2012 Nov;46(5):687-91. doi: 10.1002/mus.23412. Epub 2012 Aug 31.
5
GM-CSF-induced regulatory T cells selectively inhibit anti-acetylcholine receptor-specific immune responses in experimental myasthenia gravis.
J Neuroimmunol. 2011 Dec 15;240-241:65-73. doi: 10.1016/j.jneuroim.2011.10.010. Epub 2011 Nov 17.
6
Experimental autoimmune myasthenia gravis in the mouse.
Curr Protoc Immunol. 2011 Nov;Chapter 15:Unit 15.23. doi: 10.1002/0471142735.im1523s95.
7
Antigen specificity of immune suppression by myeloid-derived suppressor cells.
J Leukoc Biol. 2011 Jul;90(1):31-6. doi: 10.1189/jlb.0111021. Epub 2011 Apr 12.
9
In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site.
Eur J Immunol. 2011 Mar;41(3):749-59. doi: 10.1002/eji.201041069. Epub 2011 Feb 2.
10
Editorial: PGE2-producing MDSC: a role in tumor progression?
J Leukoc Biol. 2010 Nov;88(5):827-9. doi: 10.1189/jlb.0510303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验