Suppr超能文献

腔光力学反向耗散 regime 中的量子极限放大与参量不稳定性 。 (注:这里“regime”常见释义为“政权;政体;管理制度”等,在物理语境中可灵活理解为“状态、机制、 regime 等,这里直接保留英文未翻译,因为可能是特定物理术语中的特定表述,需要结合专业知识进一步准确理解其确切含义并翻译得更准确,但仅按要求直接翻译的话就是上述内容)

Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics.

作者信息

Nunnenkamp A, Sudhir V, Feofanov A K, Roulet A, Kippenberg T J

机构信息

Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.

École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

出版信息

Phys Rev Lett. 2014 Jul 11;113(2):023604. doi: 10.1103/PhysRevLett.113.023604.

Abstract

Cavity optomechanical phenomena, such as cooling, amplification, or optomechanically induced transparency, emerge due to a strong imbalance in the dissipation rates of the parametrically coupled electromagnetic and mechanical resonators. Here we analyze the reversed dissipation regime where the mechanical energy relaxation rate exceeds the energy decay rate of the electromagnetic cavity. We demonstrate that this regime allows for mechanically induced amplification (or cooling) of the electromagnetic mode. Gain, bandwidth, and added noise of this electromagnetic amplifier are derived and compared to amplification in the normal dissipation regime. In addition, we analyze the parametric instability, i.e., optomechanical Brillouin lasing, and contrast it to conventional optomechanical phonon lasing. Finally, we propose an experimental scheme that realizes the reversed dissipation regime using parametric coupling and optomechanical cooling with a second electromagnetic mode enabling quantum-limited amplification. Recent advances in high-Q superconducting microwave resonators make the reversed dissipation regime experimentally realizable.

摘要

腔光机械现象,如冷却、放大或光机械诱导透明,是由于参量耦合的电磁和机械谐振器的耗散率存在强烈不平衡而出现的。在此,我们分析反向耗散 regime,即机械能弛豫率超过电磁腔的能量衰减率的情况。我们证明,这种 regime 允许对电磁模式进行机械诱导放大(或冷却)。推导了这种电磁放大器的增益、带宽和附加噪声,并与正常耗散 regime 中的放大进行了比较。此外,我们分析了参量不稳定性,即光机械布里渊激光,并将其与传统的光机械声子激光进行了对比。最后,我们提出了一种实验方案,该方案利用参量耦合和与第二个电磁模式的光机械冷却来实现反向耗散 regime,从而实现量子极限放大。高 Q 值超导微波谐振器的最新进展使得反向耗散 regime 在实验上得以实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验