Kavli Institute of NanoScience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.
Nat Nanotechnol. 2014 Oct;9(10):820-4. doi: 10.1038/nnano.2014.168. Epub 2014 Aug 24.
The combination of low mass density, high frequency and high quality factor, Q, of mechanical resonators made of two-dimensional crystals such as graphene make them attractive for applications in force/mass sensing and exploring the quantum regime of mechanical motion. Microwave optomechanics with superconducting cavities offers exquisite position sensitivity and enables the preparation and detection of mechanical systems in the quantum ground state. Here, we demonstrate coupling between a multilayer graphene resonator with quality factors up to 220,000 and a high-Q superconducting cavity. Using thermomechanical noise as calibration, we achieve a displacement sensitivity of 17 fm Hz(-1/2). Optomechanical coupling is demonstrated by optomechanically induced reflection and absorption of microwave photons. We observe 17 dB of mechanical microwave amplification and signatures of strong optomechanical backaction. We quantitatively extract the cooperativity C, a characterization of coupling strength, from the measurement with no free parameters and find C = 8, which is promising for the quantum regime of graphene motion.
二维晶体(如石墨烯)制成的机械谐振器具有低质量密度、高频和高品质因数 Q 的特点,这使得它们在力/质量传感和探索机械运动的量子领域中具有吸引力。超导腔的微波光机械学具有出色的位置灵敏度,并能够在量子基态下制备和检测机械系统。在这里,我们展示了具有高达 220,000 的品质因数的多层石墨烯谐振器与高 Q 超导腔之间的耦合。使用热机械噪声作为校准,我们实现了 17 fm Hz(-1/2)的位移灵敏度。通过光机械诱导的微波光子反射和吸收来证明光机械耦合。我们观察到 17 dB 的机械微波放大和强光机械反向作用的特征。我们从没有自由参数的测量中定量提取了耦合强度的表征参数 C,并发现 C = 8,这对于石墨烯运动的量子领域很有前景。