Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada.
Aquat Toxicol. 2014 Oct;155:222-35. doi: 10.1016/j.aquatox.2014.06.017. Epub 2014 Jul 11.
In the aquatic environments, the predicted changes in water temperature, pO2 and pCO2 could result in hypercapnic and hypoxic conditions for aquatic animals. These conditions are thought to affect several basic cellular and physiological mechanisms. Yet, possible adverse effects of elevated CO2 (hypercapnia) on teleost fish, as well as combined effects with emerging and legacy environmental contaminants are poorly investigated. In this study, juvenile Atlantic cod (Gadus morhua) were divided into groups and exposed to three different water bath PFOS exposure regimes (0 (control), 100 and 200 μg L(-1)) for 5 days at 1h/day, followed by three different CO2-levels (normocapnia, moderate (0.3%) and high (0.9%)). The moderate CO2 level is the predicted near future (within year 2300) level, while 0.9% represent severe hypercapnia. Tissue samples were collected at 3, 6 and 9 days after initiated CO2 exposure. Effects on the endocrine and biotransformation systems were examined by analyzing levels of sex steroid hormones (E2, T, 11-KT) and transcript expression of estrogen responsive genes (ERα, Vtg-α, Vtg-β, ZP2 and ZP3). In addition, transcripts for genes encoding xenobiotic metabolizing enzymes (cyp1a and cyp3a) and hypoxia-inducible factor (HIF-1α) were analyzed. Hypercapnia alone produced increased levels of sex steroid hormones (E2, T, 11-KT) with concomitant mRNA level increase of estrogen responsive genes, while PFOS produced weak and time-dependent effects on E2-inducible gene transcription. Combined PFOS and hypercapnia exposure produced increased effects on sex steroid levels as compared to hypercapnia alone, with transcript expression patterns that are indicative of time-dependent interactive effects. Exposure to hypercapnia singly or in combination with PFOS produced modulations of the biotransformation and hypoxic responses that were apparently concentration- and time-dependent. Loading plots of principal component analysis (PCA) produced a significant grouping of individual scores according to the exposure scenarios at day 6 and 9. Overall, the PCA analysis produced a unique clustering of variables that signifies a positive correlation between exposure to high PFOS concentration and mRNA expression of E2 responsive genes. Notably, this pattern was not evident for individuals exposed to PFOS concentrations in combination with elevated CO2 scenarios. To our knowledge, the present study is the first of its kind, to evaluate such effects using combined exposure to a perfluoroalkyl sulfonate and elevated levels of CO2 saturation, representative of future oceanic climate change, in any fish species or lower vertebrate.
在水生环境中,预测的水温、pO2 和 pCO2 的变化可能导致水生动物出现高碳酸血症和缺氧条件。这些条件被认为会影响几种基本的细胞和生理机制。然而,高浓度二氧化碳(高碳酸血症)对硬骨鱼类的可能不利影响,以及与新兴和遗留环境污染物的联合影响,仍未得到充分研究。在这项研究中,幼年大西洋鳕鱼(Gadus morhua)被分为几组,分别暴露于三种不同的全氟辛烷磺酸(PFOS)水培暴露方案(0(对照)、100 和 200 μg L(-1)),每天 1 小时,持续 5 天,然后暴露于三种不同的 CO2 水平(常氧、中度(0.3%)和高(0.9%))。中度 CO2 水平是预测的近期(2300 年内)水平,而 0.9% 代表严重的高碳酸血症。在开始 CO2 暴露后 3、6 和 9 天采集组织样本。通过分析性类固醇激素(E2、T、11-KT)水平和雌激素反应基因(ERα、Vtg-α、Vtg-β、ZP2 和 ZP3)的转录表达,研究了内分泌和生物转化系统的影响。此外,还分析了编码外源物质代谢酶(cyp1a 和 cyp3a)和缺氧诱导因子(HIF-1α)的基因的转录本。高碳酸血症单独导致性类固醇激素(E2、T、11-KT)水平升高,同时雌激素反应基因的 mRNA 水平升高,而 PFOS 对 E2 诱导基因转录产生弱且时间依赖性的影响。与高碳酸血症单独暴露相比,PFOS 和高碳酸血症联合暴露产生了更高的性类固醇水平效应,转录表达模式表明存在时间依赖性的相互作用效应。单独暴露于高碳酸血症或与 PFOS 联合暴露会导致生物转化和缺氧反应的调节,这显然与浓度和时间有关。主成分分析(PCA)的加载图在第 6 天和第 9 天根据暴露情况产生了个体分数的显著分组。总的来说,PCA 分析产生了一个独特的变量聚类,表明高 PFOS 浓度与雌激素反应基因的 mRNA 表达之间存在正相关。值得注意的是,对于暴露于 PFOS 浓度与升高的 CO2 水平组合的个体,这种模式并不明显。据我们所知,这是首次使用全氟辛烷磺酸和升高的 CO2 饱和度的联合暴露来评估任何鱼类或低等脊椎动物的未来海洋气候变化的此类影响。