Feil Susanne, Krauss Jana, Thunemann Martin, Feil Robert
Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Str. 4, Tübingen, 72076, Germany.
Methods Mol Biol. 2014;1194:113-39. doi: 10.1007/978-1-4939-1215-5_6.
The Cre/lox site-specific recombination system allows the control of gene activity in space and time in almost any tissue of the mouse. A major technical advance was the development of tamoxifen-dependent Cre recombinases, such as CreER(T2), that can be activated by administration of tamoxifen to the animal. This powerful tool greatly facilitates the study of gene functions and the generation of more realistic animal models of sporadic human diseases. Another important application of tamoxifen-dependent Cre recombinases is genetic inducible fate mapping (GIFM). In GIFM studies, the inducible Cre/lox system is used to genetically label a defined cell population at a selected time by irreversible activation of the expression of a Cre-responsive reporter transgene. Then, marked cells are detected at later time points to determine how the originally labeled progenitors contribute to specific structures and cell types during pre- and postnatal development. GIFM was initially applied during mouse embryogenesis, but is now increasingly used for cell lineage tracing in adult mice under physiological and pathophysiological conditions. Here we describe the design of GIFM experiments in adult mice as exemplified by CreER(T2)-assisted tracing of vascular smooth muscle cells during the development of atherosclerotic lesions. First, we give an overview of reporter transgenes available for genetic cell marking that are expressed from the Rosa26 locus, such as β-galactosidase and fluorescent proteins. Then we present detailed protocols for the generation of experimental mice for GIFM studies, the induction of cell labeling by tamoxifen treatment, and the detection of marked cells in fixed and live tissues. Each section also provides a discussion of limitations and common pitfalls of GIFM experiments. Most of the protocols can be easily adapted to other developmental stages, cell types, Cre recombinases, and reporter transgenes and, thus, can be used as general guidelines for GIFM studies in mice.
Cre/lox位点特异性重组系统能够在小鼠几乎任何组织中实现对基因活性在空间和时间上的控制。一项重大技术进展是开发了依赖他莫昔芬的Cre重组酶,如CreER(T2),通过给动物施用他莫昔芬可激活该酶。这一强大工具极大地促进了基因功能研究以及更符合实际的散发性人类疾病动物模型的构建。依赖他莫昔芬的Cre重组酶的另一个重要应用是基因诱导命运图谱(GIFM)。在GIFM研究中,诱导型Cre/lox系统用于通过不可逆激活Cre反应性报告转基因的表达,在选定时间对特定细胞群体进行基因标记。然后,在随后的时间点检测标记细胞,以确定最初标记的祖细胞在产前和产后发育过程中如何形成特定结构和细胞类型。GIFM最初应用于小鼠胚胎发育过程,但现在越来越多地用于在生理和病理生理条件下对成年小鼠进行细胞谱系追踪。在此,我们以CreER(T2)辅助追踪动脉粥样硬化病变发展过程中的血管平滑肌细胞为例,描述成年小鼠GIFM实验的设计。首先,我们概述了可用于基因细胞标记的报告转基因,这些转基因由Rosa26位点表达,如β-半乳糖苷酶和荧光蛋白。然后,我们介绍了用于GIFM研究的实验小鼠的生成、通过他莫昔芬处理诱导细胞标记以及在固定和活体组织中检测标记细胞的详细方案。每个部分还讨论了GIFM实验的局限性和常见陷阱。大多数方案可轻松适用于其他发育阶段、细胞类型、Cre重组酶和报告转基因,因此可作为小鼠GIFM研究的通用指南。