He Lingjuan, Li Yan, Li Yi, Pu Wenjuan, Huang Xiuzhen, Tian Xueying, Wang Yue, Zhang Hui, Liu Qiaozhen, Zhang Libo, Zhao Huan, Tang Juan, Ji Hongbin, Cai Dongqing, Han Zhibo, Han Zhongchao, Nie Yu, Hu Shengshou, Wang Qing-Dong, Sun Ruilin, Fei Jian, Wang Fengchao, Chen Ting, Yan Yan, Huang Hefeng, Pu William T, Zhou Bin
State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai, China.
Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
Nat Med. 2017 Dec;23(12):1488-1498. doi: 10.1038/nm.4437. Epub 2017 Nov 13.
The Cre-loxP recombination system is the most widely used technology for in vivo tracing of stem or progenitor cell lineages. The precision of this genetic system largely depends on the specificity of Cre recombinase expression in targeted stem or progenitor cells. However, Cre expression in nontargeted cell types can complicate the interpretation of lineage-tracing studies and has caused controversy in many previous studies. Here we describe a new genetic lineage tracing system that incorporates the Dre-rox recombination system to enhance the precision of conventional Cre-loxP-mediated lineage tracing. The Dre-rox system permits rigorous control of Cre-loxP recombination in lineage tracing, effectively circumventing potential uncertainty of the cell-type specificity of Cre expression. Using this new system we investigated two topics of recent debates-the contribution of c-Kit cardiac stem cells to cardiomyocytes in the heart and the contribution of Sox9 hepatic progenitor cells to hepatocytes in the liver. By overcoming the technical hurdle of nonspecific Cre-loxP-mediated recombination, this new technology provides more precise analysis of cell lineage and fate decisions and facilitates the in vivo study of stem and progenitor cell plasticity in disease and regeneration.
Cre-loxP重组系统是体内追踪干细胞或祖细胞谱系最广泛使用的技术。该遗传系统的精确性很大程度上取决于Cre重组酶在靶向干细胞或祖细胞中的表达特异性。然而,非靶向细胞类型中的Cre表达会使谱系追踪研究的解读变得复杂,并在许多先前的研究中引发了争议。在此,我们描述了一种新的遗传谱系追踪系统,该系统整合了Dre-rox重组系统,以提高传统Cre-loxP介导的谱系追踪的精确性。Dre-rox系统允许在谱系追踪中严格控制Cre-loxP重组,有效规避了Cre表达细胞类型特异性的潜在不确定性。使用这个新系统,我们研究了最近两个有争议的话题——心脏中c-Kit心脏干细胞对心肌细胞的贡献以及肝脏中Sox9肝祖细胞对肝细胞的贡献。通过克服非特异性Cre-loxP介导的重组这一技术障碍,这项新技术为细胞谱系和命运决定提供了更精确的分析,并有助于在疾病和再生过程中对干细胞和祖细胞可塑性进行体内研究。