Hiebel Christof, Kromm Tanja, Stark Marcel, Behl Christian
Institute for Pathobiochemistry, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
J Neurochem. 2014 Nov;131(4):484-97. doi: 10.1111/jnc.12839. Epub 2014 Aug 26.
Cannabinoid Receptor 1 (CB1) has been initially described as the receptor for Delta-9-Tetrahydrocannabinol in the central nervous system (CNS), mediating retrograde synaptic signaling of the endocannabinoid system. Beside its expression in various CNS regions, CB1 is ubiquituous in peripheral tissues, where it mediates, among other activities, the cell's energy homeostasis. We sought to examine the role of CB1 in the context of the evolutionarily conserved autophagic machinery, a main constituent of the regulation of the intracellular energy status. Manipulating CB1 by siRNA knockdown in mammalian cells caused an elevated autophagic flux, while the expression of autophagy-related genes remained unaltered. Pharmacological inhibition of CB1 activity using Rimonabant likewise caused an elevated autophagic flux, which was independent of the mammalian target of rapamycin complex 1, a major switch in the control of canonical autophagy. In addition, knocking down coiled-coil myosin-like BCL2-interacting protein 1, the key-protein of the second canonical autophagy control complex, was insufficient to reduce the elevated autophagic flux induced by Rimonabant. Interestingly, lysosomal activity is not altered, suggesting a specific effect of CB1 on the regulation of autophagic flux. We conclude that CB1 activity affects the autophagic flux independently of the two major canonic regulation complexes controlling autophagic vesicle formation. Regulation of the autophagic flux in certain physiological situations such as an imbalance of nutrient supply as well as in pathological stages is of major importance for neuronal and non-neuronal cells. CB1 (Cannabinoid receptor 1) affects the metabolism of cells directly. In this study, we provide evidence that CB1 signaling has a direct influence on autophagy which might help the cell to find the right adjustment to different metabolic states and CB1 activity exerts its modulatory action independent of the canonical mTOR- and BECLIN1-complexes regulating autophagy.
大麻素受体1(CB1)最初被描述为中枢神经系统(CNS)中Δ-9-四氢大麻酚的受体,介导内源性大麻素系统的逆行突触信号传导。除了在中枢神经系统的各个区域表达外,CB1在周围组织中也普遍存在,在那里它介导细胞的能量稳态等多种活动。我们试图研究CB1在进化上保守的自噬机制中的作用,自噬机制是细胞内能量状态调节的主要组成部分。在哺乳动物细胞中通过小干扰RNA敲低来操纵CB1会导致自噬通量升高,而自噬相关基因的表达保持不变。使用利莫那班对CB1活性进行药理学抑制同样会导致自噬通量升高,这与雷帕霉素复合物1的哺乳动物靶点无关,雷帕霉素复合物1是经典自噬控制中的一个主要开关。此外,敲低卷曲螺旋肌球蛋白样BCL2相互作用蛋白1(第二种经典自噬控制复合物的关键蛋白)不足以降低利莫那班诱导的升高的自噬通量。有趣的是,溶酶体活性没有改变,这表明CB1对自噬通量的调节具有特定作用。我们得出结论,CB1活性独立于控制自噬小泡形成的两种主要经典调节复合物影响自噬通量。在某些生理情况下,如营养供应失衡以及病理阶段,自噬通量的调节对神经元和非神经元细胞至关重要。CB1(大麻素受体1)直接影响细胞的代谢。在本研究中,我们提供证据表明CB1信号传导对自噬有直接影响,这可能有助于细胞找到对不同代谢状态的正确调节,并且CB1活性独立于调节自噬的经典mTOR和BECLIN1复合物发挥其调节作用。