Suppr超能文献

从扫描流式细胞术获得的基于个体特征的数据推导浮游植物多样性指标的机遇与挑战。

Opportunities and challenges in deriving phytoplankton diversity measures from individual trait-based data obtained by scanning flow-cytometry.

作者信息

Fontana Simone, Jokela Jukka, Pomati Francesco

机构信息

Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Water Science and Technology Dübendorf, Switzerland.

Department of Environmental Systems Sciences, Institute of Integrative Biology (IBZ), ETH Zurich Zurich, Switzerland.

出版信息

Front Microbiol. 2014 Jul 1;5:324. doi: 10.3389/fmicb.2014.00324. eCollection 2014.

Abstract

In the context of understanding and predicting the effects of human-induced environmental change (EC) on biodiversity (BD), and the consequences of BD change for ecosystem functioning (EF), microbial ecologists face the challenge of linking individual level variability in functional traits to larger-scale ecosystem processes. Since lower level BD at genetic, individual, and population levels largely determines the functionality and resilience of natural populations and communities, individual level measures promise to link EC-induced physiological, ecological, and evolutionary responses to EF. Intraspecific trait differences, while representing among the least-understood aspects of natural microbial communities, have recently become easier to measure due to new technology. For example, recent advance in scanning flow-cytometry (SCF), automation of phytoplankton sampling and integration with environmental sensors allow to measure morphological and physiological traits of individual algae with high spatial and temporal resolution. Here we present emerging features of automated SFC data from natural phytoplankton communities and the opportunities that they provide for understanding the functioning of complex aquatic microbial communities. We highlight some current limitations and future needs, particularly focusing on the large amount of individual level data that, for the purpose of understanding the EC-BD-EF link, need to be translated into meaningful BD indices. We review the available functional diversity (FD) indices that, despite having been designed for mean trait values at the species level, can be adapted to individual-based trait data and provide links to ecological theory. We conclude that, considering some computational, mathematical and ecological issues, a set of multi-dimensional indices that address richness, evenness and divergence in overall community trait space represent the most promising BD metrics to study EC-BD-EF using individual level data.

摘要

在理解和预测人为环境变化(EC)对生物多样性(BD)的影响以及BD变化对生态系统功能(EF)的后果的背景下,微生物生态学家面临着将功能性状的个体水平变异性与更大尺度的生态系统过程联系起来的挑战。由于遗传、个体和种群水平上较低层次的BD在很大程度上决定了自然种群和群落的功能和恢复力,个体水平的测量有望将EC诱导的生理、生态和进化反应与EF联系起来。种内性状差异虽然是自然微生物群落中最不为人所理解的方面之一,但由于新技术的出现,最近变得更容易测量。例如,扫描流式细胞术(SCF)的最新进展、浮游植物采样的自动化以及与环境传感器的集成,使得能够以高时空分辨率测量单个藻类的形态和生理性状。在这里,我们展示了来自自然浮游植物群落的自动化SFC数据的新特征以及它们为理解复杂水生微生物群落功能提供的机会。我们强调了一些当前的局限性和未来的需求,特别关注大量的个体水平数据,为了理解EC - BD - EF联系,这些数据需要转化为有意义的BD指数。我们回顾了现有的功能多样性(FD)指数,尽管这些指数是为物种水平的平均性状值设计的,但可以适用于基于个体的性状数据,并与生态理论建立联系。我们得出结论,考虑到一些计算、数学和生态问题,一组解决整个群落性状空间丰富度、均匀度和离散度的多维指数是使用个体水平数据研究EC - BD - EF最有前景的BD指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验