Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
ISME J. 2018 Feb;12(2):356-366. doi: 10.1038/ismej.2017.160. Epub 2017 Oct 3.
Understanding how microbial diversity influences ecosystem properties is of paramount importance. Cellular traits-which determine responses to the abiotic and biotic environment-may help us rigorously link them. However, our capacity to measure traits in natural communities has thus far been limited. Here we compared the predictive power of trait richness (trait space coverage), evenness (regularity in trait distribution) and divergence (prevalence of extreme phenotypes) derived from individual-based measurements with two species-level metrics (taxonomic richness and evenness) when modelling the productivity of natural phytoplankton communities. Using phytoplankton data obtained from 28 lakes sampled at different spatial and temporal scales, we found that the diversity in individual-level morphophysiological traits strongly improved our ability to predict community resource-use and biomass yield. Trait evenness-the regularity in distribution of individual cells/colonies within the trait space-was the strongest predictor, exhibiting a robust negative relationship across scales. Our study suggests that quantifying individual microbial phenotypes in trait space may help us understand how to link physiology to ecosystem-scale processes. Elucidating the mechanisms scaling individual-level trait variation to microbial community dynamics could there improve our ability to forecast changes in ecosystem properties across environmental gradients.
了解微生物多样性如何影响生态系统特性至关重要。细胞特征——决定对非生物和生物环境的反应——可以帮助我们严格地将它们联系起来。然而,我们在自然群落中测量特征的能力迄今为止受到限制。在这里,我们比较了从基于个体的测量中得出的特征丰富度(特征空间覆盖范围)、均匀度(特征分布的规律性)和分歧度(极端表型的流行程度)与两个物种水平指标(分类丰富度和均匀度)在模拟自然浮游植物群落生产力时的预测能力。使用从不同时空尺度采样的 28 个湖泊获得的浮游植物数据,我们发现个体水平形态生理特征的多样性极大地提高了我们预测群落资源利用和生物量产量的能力。特征均匀度——特征空间中个体细胞/群体分布的规律性——是最强的预测指标,在整个尺度上表现出稳健的负相关关系。我们的研究表明,在特征空间中量化个体微生物表型可能有助于我们了解如何将生理学与生态系统尺度过程联系起来。阐明将个体水平特征变化扩展到微生物群落动态的机制,可以提高我们预测跨环境梯度的生态系统特性变化的能力。