Suppr超能文献

原发性运动皮层的功能连接性取决于前驱期亨廷顿舞蹈病的遗传负荷。

Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease.

作者信息

Koenig Katherine A, Lowe Mark J, Harrington Deborah L, Lin Jian, Durgerian Sally, Mourany Lyla, Paulsen Jane S, Rao Stephen M

机构信息

1 Imaging Institute, Cleveland Clinic , Cleveland, Ohio.

出版信息

Brain Connect. 2014 Sep;4(7):535-46. doi: 10.1089/brain.2014.0271.

Abstract

Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive-motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis.

摘要

在前驱期亨廷顿病(prHD)患者中已观察到运动功能的细微变化,但其潜在的神经机制尚未完全明确,疾病(疾病负担)对功能连接的累积影响也不清楚。本研究检查了16名基因阴性(NEG)对照者和48名具有不同疾病负担水平的基因阳性prHD参与者的初级运动皮层(M1)的静息态功能磁共振成像(rs-fMRI)连接性。结果显示,随着疾病负担增加,左侧M1与同侧M1及体感区域的连接强度降低,且与运动症状相关。运动区域内M1连接减弱还与随疾病负担演变的长程连接异常有关。在本研究中,M1与视觉中枢(双侧楔叶)的连接性降低,但与默认模式网络(DMN;后扣带回皮层)的一个枢纽的连接性增加。连接性测量的变化与认知运动功能测量的较差表现相关。短程和长程功能连接障碍也与基底神经节体积减少有关,表明M1连接减弱部分是纹状体萎缩的表现。总之,结果表明HD的前驱期与运动区域之间的异常半球间相互作用以及M1与视觉中枢和DMN连接的紊乱有关。随着个体接近明显诊断,这些变化可能分别导致运动症状增加、视觉运动整合问题以及运动执行控制缺陷。

相似文献

2
Network topology and functional connectivity disturbances precede the onset of Huntington's disease.
Brain. 2015 Aug;138(Pt 8):2332-46. doi: 10.1093/brain/awv145. Epub 2015 Jun 9.
3
Disruption of response inhibition circuits in prodromal Huntington disease.
Cortex. 2014 Sep;58:72-85. doi: 10.1016/j.cortex.2014.04.018. Epub 2014 Jun 2.
4
Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease.
Psychol Med. 2014 Nov;44(15):3341-56. doi: 10.1017/S0033291714000579. Epub 2014 Mar 27.
6
Resting-state connectivity and modulated somatomotor and default-mode networks in Huntington disease.
CNS Neurosci Ther. 2017 Jun;23(6):488-497. doi: 10.1111/cns.12701. Epub 2017 May 2.
7
Aberrant brain network connectivity in presymptomatic and manifest Huntington's disease: A systematic review.
Hum Brain Mapp. 2020 Jan;41(1):256-269. doi: 10.1002/hbm.24790. Epub 2019 Sep 18.
8
Whole-Brain Connectivity in a Large Study of Huntington's Disease Gene Mutation Carriers and Healthy Controls.
Brain Connect. 2018 Apr;8(3):166-178. doi: 10.1089/brain.2017.0538. Epub 2018 Mar 8.
9
Altered resting-state functional connectivity in complex regional pain syndrome.
J Pain. 2013 Oct;14(10):1107-1115.e8. doi: 10.1016/j.jpain.2013.04.007. Epub 2013 Jun 18.
10
Default-mode network changes in Huntington's disease: an integrated MRI study of functional connectivity and morphometry.
PLoS One. 2013 Aug 19;8(8):e72159. doi: 10.1371/journal.pone.0072159. eCollection 2013.

引用本文的文献

1
Cortico-striatal functional connectivity and cerebral small vessel disease: Contribution to mild Parkinsonian signs.
J Neuroimaging. 2022 Mar;32(2):352-362. doi: 10.1111/jon.12949. Epub 2021 Dec 27.
2
An action-concept processing advantage in a patient with a double motor cortex.
Brain Cogn. 2022 Feb;156:105831. doi: 10.1016/j.bandc.2021.105831. Epub 2021 Dec 16.
3
Huntington's disease mouse models: unraveling the pathology caused by CAG repeat expansion.
Fac Rev. 2021 Oct 21;10:77. doi: 10.12703/r/10-77. eCollection 2021.
5
Altered cerebrovascular response to acute exercise in patients with Huntington's disease.
Brain Commun. 2020;2(1):fcaa044. doi: 10.1093/braincomms/fcaa044. Epub 2020 Apr 16.
6
Aberrant brain network connectivity in presymptomatic and manifest Huntington's disease: A systematic review.
Hum Brain Mapp. 2020 Jan;41(1):256-269. doi: 10.1002/hbm.24790. Epub 2019 Sep 18.
7
Dynamic functional network connectivity in Huntington's disease and its associations with motor and cognitive measures.
Hum Brain Mapp. 2019 Apr 15;40(6):1955-1968. doi: 10.1002/hbm.24504. Epub 2019 Jan 7.
8
Multiple clinical features of Huntington's disease correlate with mutant HTT gene CAG repeat lengths and neurodegeneration.
J Neurol. 2019 Mar;266(3):551-564. doi: 10.1007/s00415-018-8940-6. Epub 2018 Jun 28.
9
Resting-state connectivity in neurodegenerative disorders: Is there potential for an imaging biomarker?
Neuroimage Clin. 2018 Mar 16;18:849-870. doi: 10.1016/j.nicl.2018.03.013. eCollection 2018.
10
Whole-Brain Connectivity in a Large Study of Huntington's Disease Gene Mutation Carriers and Healthy Controls.
Brain Connect. 2018 Apr;8(3):166-178. doi: 10.1089/brain.2017.0538. Epub 2018 Mar 8.

本文引用的文献

1
Disruption of response inhibition circuits in prodromal Huntington disease.
Cortex. 2014 Sep;58:72-85. doi: 10.1016/j.cortex.2014.04.018. Epub 2014 Jun 2.
2
Motor demand-dependent activation of ipsilateral motor cortex.
J Neurophysiol. 2014 Aug 15;112(4):999-1009. doi: 10.1152/jn.00110.2014. Epub 2014 May 21.
3
Clinical and Biomarker Changes in Premanifest Huntington Disease Show Trial Feasibility: A Decade of the PREDICT-HD Study.
Front Aging Neurosci. 2014 Apr 22;6:78. doi: 10.3389/fnagi.2014.00078. eCollection 2014.
4
Distinct fine-scale fMRI activation patterns of contra- and ipsilateral somatosensory areas 3b and 1 in humans.
Hum Brain Mapp. 2014 Sep;35(9):4841-57. doi: 10.1002/hbm.22517. Epub 2014 Apr 1.
5
Movement sequencing in Huntington disease.
World J Biol Psychiatry. 2014 Aug;15(6):459-71. doi: 10.3109/15622975.2014.895042. Epub 2014 Mar 28.
6
Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences.
Nat Neurosci. 2014 Mar;17(3):423-30. doi: 10.1038/nn.3632. Epub 2014 Jan 26.
7
Effects of aerobic fitness on aging-related changes of interhemispheric inhibition and motor performance.
Front Aging Neurosci. 2013 Oct 30;5:66. doi: 10.3389/fnagi.2013.00066. eCollection 2013.
8
Reduced functional brain connectivity prior to and after disease onset in Huntington's disease.
Neuroimage Clin. 2013 Mar 14;2:377-84. doi: 10.1016/j.nicl.2013.03.001. eCollection 2013.
9
Tracking motor impairments in the progression of Huntington's disease.
Mov Disord. 2014 Mar;29(3):311-9. doi: 10.1002/mds.25657. Epub 2013 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验