Liu Minghui, Zeng Hua Chun
Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore , 10 Kent Ridge Crescent, Singapore 119260.
Langmuir. 2014 Aug 19;30(32):9838-49. doi: 10.1021/la501637m. Epub 2014 Aug 8.
Solid metal precursors (alloys or monometals) can serve both as a starting template and as a source material for chemical transformation to metal chalcogenides. Herein, we develop a simple solution-based strategy to obtain highly monodisperse noble-metal-based heterostructured nanocrystals from such precursor seeds. By utilizing chemical and structural inhomogeneity of these metal seeds, in this work, we have synthesized a total of five I-VI (Ag2S, Ag2Se, Ag3AuS2, Ag3AuSe2, and Cu9S5), three II-VI (CdS, CdSe, and CuSe), and four I-III-VI (AgInS2, AgInSe2, CuInS2, and CuInSe2) chalcogenides, together with their fifteen associated heterodimers (Au-Ag2S, Au-Ag2Se, Au-Ag3AuS2, Au-Ag3AuSe2, Au-AgInS2, Au-AgInSe2, Au-CdS, Au-CdSe, Ag-Ag2S, Ag-AgInS2, Au-Cu9S5, Au-CuInS2, Au-CuSe, Au-CuInSe2, and Pt-AgInS2) to affirm the process generality. Briefly, by adding elemental sulfur or selenium to AuAg alloy seeds and tuning the reaction conditions, we can readily obtain phase-pure Au-Ag2S, Au-Ag2Se, Au-Ag3AuS2, and Au-Ag3AuSe2 heterostructures. Similarly, we can also fabricate Au-AgInS2 and Au-AgInSe2 heterostructures from the AuAg seeds by adding sulfur/selenium and indium precursors. Furthermore, by partial or full conversion of Ag seeds, we can prepare both single-phase Ag chalcogenide nanocrystals and Ag-based heterostructures. To demonstrate wide applicability of this strategy, we have also synthesized Au-based binary and ternary Cu chalcogenide (Au-Cu9S5, Au-CuSe, Au-CuInS2, and Au-CuInSe2) heterostructures from alloy seeds of AuCu and Pt chalcogenides (e.g., Pt-AgInS2) from alloy seeds of PtAg. The structure and composition of the above products have been confirmed with X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy methods. A kinetic investigation of the formation mechanism of these heterostructures is brought forward using Au-AgInS2 and Ag-CuInS2 as model examples.
固态金属前驱体(合金或单金属)既可以作为起始模板,也可以作为化学转化为金属硫族化物的原料。在此,我们开发了一种基于溶液的简单策略,以从这种前驱体种子中获得高度单分散的贵金属基异质结构纳米晶体。通过利用这些金属种子的化学和结构不均匀性,在本工作中,我们总共合成了五种I-VI族(Ag2S、Ag2Se、Ag3AuS2、Ag3AuSe2和Cu9S5)、三种II-VI族(CdS、CdSe和CuSe)以及四种I-III-VI族(AgInS2、AgInSe2、CuInS2和CuInSe2)硫族化物,以及它们的十五种相关异质二聚体(Au-Ag2S、Au-Ag2Se、Au-Ag3AuS2、Au-Ag3AuSe2、Au-AgInS2、Au-AgInSe2、Au-CdS、Au-CdSe、Ag-Ag2S、Ag-AgInS2、Au-Cu9S5、Au-CuInS2、Au-CuSe、Au-CuInSe2和Pt-AgInS2),以证实该过程的通用性。简而言之,通过向AuAg合金种子中添加元素硫或硒并调整反应条件,我们可以轻松获得相纯的Au-Ag2S、Au-Ag2Se、Au-Ag3AuS2和Au-Ag3AuSe2异质结构。同样,我们也可以通过添加硫/硒和铟前驱体,从AuAg种子中制备Au-AgInS2和Au-AgInSe2异质结构。此外,通过Ag种子的部分或完全转化,我们可以制备单相Ag硫族化物纳米晶体和Ag基异质结构。为了证明该策略的广泛适用性,我们还从AuCu合金种子中合成了基于Au的二元和三元Cu硫族化物(Au-Cu9S5、Au-CuSe、Au-CuInS2和Au-CuInSe2)异质结构,并从PtAg合金种子中合成了Pt硫族化物(例如Pt-AgInS2)。上述产物的结构和组成已通过X射线衍射、高分辨率透射电子显微镜、X射线光电子能谱和能量色散X射线光谱法得到证实。以Au-AgInS2和Ag-CuInS2为模型示例,对这些异质结构的形成机理进行了动力学研究。