Suppr超能文献

二芳基二硒化物和二碲化物作为胶体半导体纳米晶的有用合成子。

Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.

机构信息

Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.

出版信息

Acc Chem Res. 2015 Nov 17;48(11):2918-26. doi: 10.1021/acs.accounts.5b00362. Epub 2015 Nov 6.

Abstract

The ability to synthesize colloidal semiconductor nanocrystals in a well-controlled manner (i.e., with fine control over size, shape, size dispersion, and composition) has been mastered over the past 15 years. Much of this success stems from careful studies of precursor conversion and nanocrystal growth with respect to phosphine chalcogenide precursors for the synthesis of metal chalcogenide nanocrystals. Despite the high level of success that has been achieved with phosphine chalcogenides, there has been a longstanding interest in exploring alternate chalcogenide precursors because of issues associated with phosphine chalcogenide cost, purity, toxicity, etc. This has resulted in a large body of literature on the use of sulfur and selenium dissolved in octadecene or amines, thio- and selenoureas, and silyl chalcogenides as alternate chalcogenide precursors for metal chalcogenide nanocrystal synthesis. In this Account, emerging work on the use of diorganyl dichalcogenides (R-E-E-R, where E = S, Se, or Te and R = alkyl, allyl, benzyl, or aryl) as alternate chalcogenide precursors for the synthesis of metal chalcogenide nanocrystals is summarized. Among the benefits of these dichalcogenide synthons are the following: (i) they represent the first and only common precursor type that can function as chalcogen transfer reagents for each of the group VI elements (i.e., to make metal oxide, metal sulfide, metal selenide, and metal telluride nanocrystals); (ii) they possess relatively weak E-E bonds that can be readily cleaved under mild thermolytic or photolytic conditions; and (iii) the organic substituents can be tuned to affect the reactivity. These combined attributes have allowed dichalcogenide precursors to be employed for a wide range of metal chalcogenide nanocrystal syntheses, including those for In2S3, SnxGe1-xSe, SnTe, Cu2-xSySe1-y, ZnSe, CdS, CdSe, MoSe2, WSe2, BiSe, and CuFeS2. Interestingly, a number of metastable phases of compositionally complex semiconductors can be kinetically accessed through syntheses utilizing dichalcogenide precursors, likely as a result of their ability to convert at relatively low temperatures. These include the hexagonal wurtzite phases of CuInS2, CuInSe2, Cu2ZnSn(S1-xSex)4, and Cu2SnSe3 nanocrystals. The discovery of crystal phases on the nanoscale that do not exist in their bulk analogues is a developing area of nanocrystal chemistry, and dichalcogenides are proving to be a useful synthetic tool in this regard. The most recent application of dichalcogenide synthons for semiconductor nanocrystals is their use as precursors for surface ligands. While there is a rich history of using thiol ligands for semiconductor nanocrystals, the analogous selenol and tellurol ligands have not been studied, likely because of their oxidative instability. Dichalcogenides have proven useful in this regard, as they can be reduced in situ with diphenylphosphine to give the corresponding selenol or tellurol ligand that binds to the nanocrystal surface. This chemistry has been applied to the in situ synthesis and ligand binding of selenols to PbSe nanocrystals and both selenols and tellurols to CdSe nanocrystals. These initial studies have allowed the photophysics of these nanocrystal-ligand constructs to be investigated; in both cases, it appears that the selenol and tellurol ligands act as hole traps that quench the photoluminescence of the semiconductor nanocrystals.

摘要

过去 15 年来,人们已经掌握了在可控条件下合成胶体半导体纳米晶体的能力(即可以精细控制尺寸、形状、尺寸分布和组成)。这在很大程度上得益于对膦卤化物前体进行的关于金属卤化物纳米晶体合成的前驱体转化和纳米晶体生长的仔细研究。尽管在使用膦卤化物方面取得了很高的成功,但由于与膦卤化物的成本、纯度、毒性等相关的问题,人们一直对探索替代卤化物前体感兴趣。这导致了大量关于使用硫和硒溶解在十八烯或胺、硫代和硒代脲以及硅基卤化物作为金属卤化物纳米晶体合成的替代卤化物前体的文献。在本报告中,总结了使用二有机二卤化物(R-E-E-R,其中 E = S、Se 或 Te,R = 烷基、烯丙基、苄基或芳基)作为金属卤化物纳米晶体合成的替代卤化物前体的新兴工作。这些二卤化物前体的优点如下:(i)它们是第一种也是唯一一种可以作为所有第六族元素的硫转移试剂的共同前体类型(即用于制造金属氧化物、金属硫化物、金属硒化物和金属碲化物纳米晶体);(ii)它们具有相对较弱的 E-E 键,在温和的热解或光解条件下很容易断裂;(iii)有机取代基可以被调谐以影响反应性。这些综合属性使二卤化物前体能够用于广泛的金属卤化物纳米晶体合成,包括 In2S3、SnxGe1-xSe、SnTe、Cu2-xSySe1-y、ZnSe、CdS、CdSe、MoSe2、WSe2、BiSe 和 CuFeS2。有趣的是,通过使用二卤化物前体进行合成,可以动力学地获得许多组成复杂的半导体的亚稳相,这可能是由于它们在相对较低的温度下能够转化。其中包括 CuInS2、CuInSe2、Cu2ZnSn(S1-xSex)4 和 Cu2SnSe3 纳米晶体的六方纤锌矿相。在纳米尺度上发现不存在于其体相类似物中的晶体相是纳米晶体化学的一个正在发展的领域,而二卤化物在这方面被证明是一种有用的合成工具。二卤化物前体在半导体纳米晶体中的最新应用是作为表面配体的前体。虽然使用硫醇配体用于半导体纳米晶体已有丰富的历史,但类似的硒醇和碲醇配体尚未得到研究,可能是因为它们的氧化不稳定性。二卤化物在这方面非常有用,因为它们可以用二苯基膦原位还原,得到与纳米晶体表面结合的相应硒醇或碲醇配体。这种化学已应用于硒醇到 PbSe 纳米晶体的原位合成和配体结合,以及硒醇和碲醇到 CdSe 纳米晶体的结合。这些初步研究允许研究这些纳米晶体-配体结构的光物理性质;在这两种情况下,似乎硒醇和碲醇配体充当空穴陷阱,猝灭半导体纳米晶体的光致发光。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验