Zhang Jie, Drinkwater Bruce, Wilcox Paul
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Aug;61(8):1284-95. doi: 10.1109/TUFFC.2014.3035.
Ultrasonic array inspection of a component with a nonplanar surface can be achieved in immersion using a liquid layer to couple ultrasonic waves from an array probe into a solid structure. This paper presents an efficient way to compute the appropriate element time delays in immersion without compromising the measurement accuracy. In the proposed imaging process, the surface geometry is first measured ultrasonically by forming an image of the component surface in the couplant. This leads to a set of discrete points that define the surface profile of the component. The propagation time from an array element to a point in the component is then determined by a grid search of candidate ray-paths through each surface point to identify the one that yields the shortest traveling time. Propagation times in the component are first generated on a coarse mesh of points and then these values are linearly interpolated to find the propagation time to each image pixel. The computed propagation times are finally used to reconstruct an image of the component interior. An analytical model is developed to determine a relationship between estimated propagation time errors and their effect on the array inspection in terms of signal amplitude from a reflector. For nominally normal incidence inspection of a metallic component with a minimum surface radius of 30 wavelengths immersed in water, it is found that the surface of the component can be adequately described by points spaced by one wavelength and that delays can be computed on a coarse grid of points spaced at 3 wavelengths. With these parameters, the reduction in amplitude of a point target in the component is shown to be less than 1 dB.
使用液层将超声波从阵列探头耦合到固体结构中,可在液浸条件下对具有非平面表面的部件进行超声阵列检测。本文提出了一种在不影响测量精度的情况下,有效计算液浸条件下合适元件时间延迟的方法。在所提出的成像过程中,首先通过在耦合剂中形成部件表面的图像来超声测量表面几何形状。这会得到一组定义部件表面轮廓的离散点。然后通过对穿过每个表面点的候选射线路径进行网格搜索,确定从阵列元件到部件中某一点的传播时间,以找出传播时间最短的路径。首先在粗点网格上生成部件中的传播时间,然后对这些值进行线性插值,以找到到每个图像像素的传播时间。最终,将计算得到的传播时间用于重建部件内部的图像。开发了一个分析模型,以确定估计传播时间误差与其对反射器信号幅度的阵列检测影响之间的关系。对于浸入水中的最小表面半径为30个波长的金属部件进行名义上的垂直入射检测,发现部件表面可以用间隔为一个波长的点充分描述,并且延迟可以在间隔为3个波长的粗点网格上计算。使用这些参数时,部件中一个点目标的幅度降低显示小于1dB。