Suppr超能文献

耳蜗中的红外神经刺激

Infrared neural stimulation in the cochlea.

作者信息

Richter Claus-Peter, Rajguru Suhrud, Bendett Mark

机构信息

Department of Otolaryngology, Northwestern University, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611, USA ; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, IL 60208, USA ; The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.

Department of Biomedical Engineering, University of Miami, Miami FL 33146, USA ; Department of Otolaryngology, University of Miami, Miami FL 33136, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2013 Mar 8;8565:85651Y. doi: 10.1117/12.2010337.

Abstract

The application of photonics to manipulate and stimulate neurons and to study neural networks has gained momentum over the last decade. Two general methods have been used: the genetic expression of light or temperature sensitive ion channels in the plasma membrane of neurons (Optogenetics and Thermogenetics) and the direct stimulation of neurons using infrared radiation (Infrared Neural Stimulation, INS). Both approaches have their strengths and challenges, which are well understood with a profound understanding of the light tissue interaction(s). This paper compares the opportunities of the methods for the use in cochlear prostheses. Ample data are already available on the stimulation of the cochlea with INS. The data show that the stimulation is selective, feasible at rates that would be sufficient to encode acoustic information and may be beneficial over conventional pulsed electrical stimulation. A third approach, using lasers in stress confinement to generate pressure waves and to stimulate the functional cochlea mechanically will also be discussed.

摘要

在过去十年中,光子学在操纵和刺激神经元以及研究神经网络方面的应用发展迅速。已采用两种通用方法:在神经元质膜中对光或温度敏感离子通道进行基因表达(光遗传学和热遗传学),以及使用红外辐射直接刺激神经元(红外神经刺激,INS)。这两种方法都有各自的优势和挑战,在深入理解光与组织相互作用的情况下,这些优势和挑战是广为人知的。本文比较了这两种方法在耳蜗植入物中应用的机会。关于使用INS刺激耳蜗已有大量数据。数据表明,这种刺激具有选择性,在足以编码声学信息的速率下是可行的,并且可能优于传统的脉冲电刺激。还将讨论第三种方法,即在应力限制下使用激光产生压力波并机械刺激功能性耳蜗。

相似文献

1
Infrared neural stimulation in the cochlea.
Proc SPIE Int Soc Opt Eng. 2013 Mar 8;8565:85651Y. doi: 10.1117/12.2010337.
2
Spatial extent of cochlear infrared neural stimulation determined by tone-on-light masking.
J Biomed Opt. 2011 Nov;16(11):118002. doi: 10.1117/1.3655590.
3
Infrared neural stimulation fails to evoke neural activity in the deaf guinea pig cochlea.
Hear Res. 2015 Jun;324:46-53. doi: 10.1016/j.heares.2015.03.005. Epub 2015 Mar 19.
4
Near-infrared stimulation of the auditory nerve: A decade of progress toward an optical cochlear implant.
Laryngoscope Investig Otolaryngol. 2021 Mar 12;6(2):310-319. doi: 10.1002/lio2.541. eCollection 2021 Apr.
5
Acoustic events and "optophonic" cochlear responses induced by pulsed near-infrared laser.
IEEE Trans Biomed Eng. 2011 Jun;58(6):1648-55. doi: 10.1109/TBME.2011.2108297. Epub 2011 Jan 28.
6
Spread of cochlear excitation during stimulation with pulsed infrared radiation: inferior colliculus measurements.
J Neural Eng. 2011 Oct;8(5):056006. doi: 10.1088/1741-2560/8/5/056006. Epub 2011 Aug 10.
8
Optical stimulation of neural tissue.
Healthc Technol Lett. 2020 Jun 25;7(3):58-65. doi: 10.1049/htl.2019.0114. eCollection 2020 Jun.
9
Masking of Infrared Neural Stimulation (INS) in hearing and deaf guinea pigs.
Proc SPIE Int Soc Opt Eng. 2013 Mar 8;8565:85655V. doi: 10.1117/12.2013848.

引用本文的文献

1
Emerging trends in the development of flexible optrode arrays for electrophysiology.
APL Bioeng. 2023 Sep 7;7(3):031503. doi: 10.1063/5.0153753. eCollection 2023 Sep.
2
Molecular Tools for Targeted Control of Nerve Cell Electrical Activity. Part II.
Acta Naturae. 2021 Oct-Dec;13(4):17-32. doi: 10.32607/actanaturae.11415.
3
Technological Improvement Rates and Evolution of Energy-Based Therapeutics.
Front Med Technol. 2021 Sep 3;3:714140. doi: 10.3389/fmedt.2021.714140. eCollection 2021.
4
Channel Interaction During Infrared Light Stimulation in the Cochlea.
Lasers Surg Med. 2021 Sep;53(7):986-997. doi: 10.1002/lsm.23360. Epub 2021 Jan 21.
5
A sound coding strategy based on a temporal masking model for cochlear implants.
PLoS One. 2021 Jan 8;16(1):e0244433. doi: 10.1371/journal.pone.0244433. eCollection 2021.
6
Advanced Near-Infrared Light for Monitoring and Modulating the Spatiotemporal Dynamics of Cell Functions in Living Systems.
Adv Sci (Weinh). 2020 Feb 27;7(8):1903783. doi: 10.1002/advs.201903783. eCollection 2020 Apr.
7
Learning from Solar Energy Conversion: Biointerfaces for Artificial Photosynthesis and Biological Modulation.
Nano Lett. 2019 Mar 21;19(4):2189-2197. doi: 10.1021/acs.nanolett.9b00388.
8
Outlook and future of inner ear therapy.
Hear Res. 2018 Oct;368:127-135. doi: 10.1016/j.heares.2018.05.009. Epub 2018 May 17.
9
Thermal Excitation of the Mechanotransduction Apparatus of Hair Cells.
Neuron. 2018 Feb 7;97(3):586-595.e4. doi: 10.1016/j.neuron.2018.01.013.
10
Low Efficiency Upconversion Nanoparticles for High-Resolution Coalignment of Near-Infrared and Visible Light Paths on a Light Microscope.
ACS Appl Mater Interfaces. 2017 Mar 8;9(9):7929-7940. doi: 10.1021/acsami.6b15322. Epub 2017 Feb 21.

本文引用的文献

1
Nanosecond laser pulse stimulation of the inner ear-a wavelength study.
Biomed Opt Express. 2012 Dec 1;3(12):3332-45. doi: 10.1364/BOE.3.003332. Epub 2012 Nov 28.
2
Neural stimulation with optical radiation.
Laser Photon Rev. 2011 Jan 1;5(1):68-80. doi: 10.1002/lpor.200900044. Epub 2010 Jun 7.
3
Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation.
Anat Rec (Hoboken). 2012 Nov;295(11):1987-99. doi: 10.1002/ar.22583. Epub 2012 Oct 8.
4
Optogenetics in neuroscience: what we gain from studies in mammals.
Neurosci Bull. 2012 Aug;28(4):423-34. doi: 10.1007/s12264-012-1250-6.
5
TRPV4 channels mediate the infrared laser-evoked response in sensory neurons.
J Neurophysiol. 2012 Jun;107(12):3227-34. doi: 10.1152/jn.00424.2011. Epub 2012 Mar 21.
6
Infrared light excites cells by changing their electrical capacitance.
Nat Commun. 2012 Mar 13;3:736. doi: 10.1038/ncomms1742.
7
High-frequency limit of neural stimulation with ChR2.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4167-70. doi: 10.1109/IEMBS.2011.6091034.
8
The microbial opsin family of optogenetic tools.
Cell. 2011 Dec 23;147(7):1446-57. doi: 10.1016/j.cell.2011.12.004.
9
Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits.
Curr Opin Neurobiol. 2012 Feb;22(1):61-71. doi: 10.1016/j.conb.2011.10.023. Epub 2011 Nov 24.
10
A history of optogenetics: the development of tools for controlling brain circuits with light.
F1000 Biol Rep. 2011;3:11. doi: 10.3410/B3-11. Epub 2011 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验