Tran Que-Tien, Pearlstein Robert A, Williams Sarah, Reilly John, Krucker Thomas, Erdemli Gül
Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, 02139.
Proteins. 2014 Nov;82(11):2998-3012. doi: 10.1002/prot.24659. Epub 2014 Aug 21.
The emergence of Gram-negative "superbugs" exhibiting resistance to known antibacterials poses a major public health concern. Low molecular weight Gram-negative antibacterials are believed to penetrate the outer bacterial membrane (OM) through porin channels. Therefore, intracellular exposure needed to drive antibacterial target occupancy should depend critically on the translocation rates through these proteins and avoidance of efflux pumps. We used electrophysiology to study the structure-translocation kinetics relationships of a set of carbapenem antibacterials through purified porin OmpC reconstituted in phospholipid bilayers. We also studied the relative susceptibility of OmpC+ and OmpC- E. coli to these compounds as an orthogonal test of translocation. Carbapenems exhibit good efficacy in OmpC-expressing E. coli cells compared with other known antibacterials. Ertapenem, which contains an additional acidic group compared to other analogs, exhibits the fastest entry into OmpC (k(on) ≈ 2 × 10(4) M(-1) s(-1)). Zwitterionic compounds with highly polar groups attached to the penem-2 ring, including panipenem, imipenem and doripenem exhibit faster k(on) (>10(4) M(-1) s(-1)), while meropenem and biapenem with fewer exposed polar groups exhibit slower k(on) (∼5 × 10(3) M(-1) s(-1)). Tebipenem pivoxil and razupenem exhibit ∼13-fold slower k(on) (∼1.5 × 10(3) M(-1) s(-1)) than ertapenem. Overall, our results suggest that (a) OmpC serves as an important route of entry of these antibacterials into E. coli cells; and (b) that the structure-kinetic relationships of carbapenem translocation are governed by H-bond acceptor/donor composition (in accordance with our previous findings that the enthalpic cost of transferring water from the constriction zone to bulk solvent increases in the presence of exposed nonpolar groups).
对已知抗菌药物呈现耐药性的革兰氏阴性“超级细菌”的出现,引发了重大的公共卫生问题。低分子量革兰氏阴性抗菌药物被认为是通过孔蛋白通道穿透细菌外膜(OM)的。因此,驱动抗菌靶点占据所需的细胞内暴露程度应主要取决于通过这些蛋白的转运速率以及对流出泵的规避。我们利用电生理学方法,研究了一组碳青霉烯类抗菌药物通过重构于磷脂双分子层中的纯化孔蛋白OmpC的结构 - 转运动力学关系。我们还研究了OmpC +和OmpC - 大肠杆菌对这些化合物的相对敏感性,作为转运的正交试验。与其他已知抗菌药物相比,碳青霉烯类在表达OmpC的大肠杆菌细胞中表现出良好的疗效。与其他类似物相比含有额外酸性基团的厄他培南,进入OmpC的速度最快(k(on)≈2×10(4) M(-1) s(-1))。在青霉烯 - 2环上连接有高极性基团的两性离子化合物,包括帕尼培南、亚胺培南和美罗培南,表现出更快的k(on)(>10(4) M(-1) s(-1)),而暴露极性基团较少的美罗培南和比阿培南则表现出较慢的k(on)(约5×10(3) M(-1) s(-1))。替比培南酯和雷祖培南的k(on)(约1.5×10(3) M(-1) s(-1))比厄他培南慢约13倍。总体而言,我们的结果表明:(a)OmpC是这些抗菌药物进入大肠杆菌细胞的重要途径;(b)碳青霉烯转运的结构 - 动力学关系受氢键受体/供体组成的支配(这与我们之前的研究结果一致,即在存在暴露的非极性基团时,将水从收缩区转移到本体溶剂中的焓变成本会增加)。