Suppr超能文献

通过敲除丙酮酸甲酸裂解酶基因提高肺炎克雷伯菌中2,3-丁二醇的产量。

Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene.

作者信息

Jung Moo-Young, Mazumdar Suman, Shin Sang Heum, Yang Kap-Seok, Lee Jinwon, Oh Min-Kyu

机构信息

Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.

Macrogen Inc., Seoul, Republic of Korea.

出版信息

Appl Environ Microbiol. 2014 Oct;80(19):6195-203. doi: 10.1128/AEM.02069-14. Epub 2014 Aug 1.

Abstract

Klebsiella pneumoniae is considered a good host strain for the production of 2,3-butanediol, which is a promising platform chemical with various industrial applications. In this study, three genes, including those encoding glucosyltransferase (wabG), lactate dehydrogenase (ldhA), and pyruvate formate-lyase (pflB), were disrupted in K. pneumoniae to reduce both its pathogenic characteristics and the production of several by-products. In flask cultivation with minimal medium, the yield of 2,3-butanediol from rationally engineered K. pneumoniae (ΔwabG ΔldhA ΔpflB) reached 0.461 g/g glucose, which was 92.2% of the theoretical maximum, with a significant reduction in by-product formation. However, the growth rate of the pflB mutant was slightly reduced compared to that of its parental strain. Comparison with similar mutants of Escherichia coli suggested that the growth defect of pflB-deficient K. pneumoniae was caused by redox imbalance rather than reduced level of intracellular acetyl coenzyme A (acetyl-CoA). From an analysis of the transcriptome, it was confirmed that the removal of pflB from K. pneumoniae significantly repressed the expression of genes involved in the formate hydrogen lyase (FHL) system.

摘要

肺炎克雷伯菌被认为是生产2,3-丁二醇的优良宿主菌株,2,3-丁二醇是一种具有多种工业应用前景的平台化学品。在本研究中,肺炎克雷伯菌中的三个基因,包括编码葡糖基转移酶(wabG)、乳酸脱氢酶(ldhA)和丙酮酸甲酸裂解酶(pflB)的基因被破坏,以降低其致病特性和几种副产物的产生。在以基本培养基进行的摇瓶培养中,经过合理工程改造的肺炎克雷伯菌(ΔwabG ΔldhA ΔpflB)的2,3-丁二醇产量达到0.461 g/g葡萄糖,为理论最大值的92.2%,副产物形成显著减少。然而,pflB突变体的生长速率与其亲本菌株相比略有降低。与大肠杆菌的类似突变体比较表明,缺乏pflB的肺炎克雷伯菌的生长缺陷是由氧化还原失衡而非细胞内乙酰辅酶A(acetyl-CoA)水平降低引起的。通过转录组分析证实,从肺炎克雷伯菌中去除pflB显著抑制了参与甲酸氢裂解酶(FHL)系统的基因的表达。

相似文献

1
Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene.
Appl Environ Microbiol. 2014 Oct;80(19):6195-203. doi: 10.1128/AEM.02069-14. Epub 2014 Aug 1.
2
Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2,3-butanediol production.
Biotechnol Lett. 2016 Jun;38(6):975-82. doi: 10.1007/s10529-016-2062-y. Epub 2016 Feb 17.
3
Regulation of Pyruvate Formate Lyase-Deficient Klebsiella pneumoniae for Efficient 1,3-Propanediol Bioproduction.
Curr Microbiol. 2020 Jan;77(1):55-61. doi: 10.1007/s00284-019-01795-5. Epub 2019 Nov 8.
4
Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene.
Appl Microbiol Biotechnol. 2013 Mar;97(5):1997-2007. doi: 10.1007/s00253-012-4284-9. Epub 2012 Jul 26.
5
Physiological investigations of the influences of byproduct pathways on 3-hydroxypropionic acid production in Klebsiella pneumoniae.
J Basic Microbiol. 2019 Dec;59(12):1195-1207. doi: 10.1002/jobm.201800640. Epub 2019 Oct 16.
7
In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production.
J Ind Microbiol Biotechnol. 2013 Sep;40(9):1057-66. doi: 10.1007/s10295-013-1298-y. Epub 2013 Jun 19.
8
The Role of the Pyruvate Acetyl-CoA Switch in the Production of 1,3-Propanediol by Klebsiella pneumoniae.
Appl Biochem Biotechnol. 2017 Mar;181(3):1199-1210. doi: 10.1007/s12010-016-2278-2. Epub 2016 Oct 12.

引用本文的文献

1
Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production.
Appl Microbiol Biotechnol. 2024 Jan 19;108(1):146. doi: 10.1007/s00253-023-12911-8.
2
Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds.
Molecules. 2023 Feb 2;28(3):1418. doi: 10.3390/molecules28031418.
3
Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers.
Chem Rev. 2023 Mar 8;123(5):2609-2734. doi: 10.1021/acs.chemrev.2c00354. Epub 2022 Oct 13.
4
Establishing a -Based Cell-Free Protein Synthesis System.
Molecules. 2022 Jul 22;27(15):4684. doi: 10.3390/molecules27154684.
5
Blocking the 2,3-butanediol synthesis pathway of Klebsiella pneumoniae resulted in L-valine production.
World J Microbiol Biotechnol. 2022 Mar 29;38(5):81. doi: 10.1007/s11274-022-03266-9.
6
Metabolic Engineering of for Improved 2,3-Butanediol Production by Manipulating NADH Levels and Overexpressing the Small RNA RyhB.
Front Microbiol. 2021 Oct 8;12:754306. doi: 10.3389/fmicb.2021.754306. eCollection 2021.
7
High alcohol-producing causes fatty liver disease through 2,3-butanediol fermentation pathway .
Gut Microbes. 2021 Jan-Dec;13(1):1979883. doi: 10.1080/19490976.2021.1979883.
8
Improved production of 2,3-butanediol and isobutanol by engineering electron transport chain in Escherichia coli.
Microb Biotechnol. 2021 Jan;14(1):213-226. doi: 10.1111/1751-7915.13669. Epub 2020 Sep 20.
9
10
Regulation of Pyruvate Formate Lyase-Deficient Klebsiella pneumoniae for Efficient 1,3-Propanediol Bioproduction.
Curr Microbiol. 2020 Jan;77(1):55-61. doi: 10.1007/s00284-019-01795-5. Epub 2019 Nov 8.

本文引用的文献

1
Production of 2,3-butanediol from glucose byBacillus licheniformis.
World J Microbiol Biotechnol. 1992 Jul;8(4):378-81. doi: 10.1007/BF01198748.
2
Observation of 2,3-butanediol biosynthesis in Lys regulator mutated Klebsiella pneumoniae at gene transcription level.
J Biotechnol. 2013 Dec;168(4):520-6. doi: 10.1016/j.jbiotec.2013.09.015. Epub 2013 Sep 25.
3
In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production.
J Ind Microbiol Biotechnol. 2013 Sep;40(9):1057-66. doi: 10.1007/s10295-013-1298-y. Epub 2013 Jun 19.
4
Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production.
J Biosci Bioeng. 2013 Aug;116(2):186-92. doi: 10.1016/j.jbiosc.2013.02.021. Epub 2013 May 1.
5
An accurate method for estimation of the intracellular aqueous volume of Escherichia coli cells.
J Microbiol Methods. 2013 May;93(2):73-6. doi: 10.1016/j.mimet.2013.02.006. Epub 2013 Feb 26.
6
Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene.
Appl Microbiol Biotechnol. 2013 Mar;97(5):1997-2007. doi: 10.1007/s00253-012-4284-9. Epub 2012 Jul 26.
9
10
Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.
Appl Microbiol Biotechnol. 2012 Jul;95(2):461-9. doi: 10.1007/s00253-012-3883-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验