Bölling Christian, Weidlich Michael, Holzhütter Hermann-Georg
Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany.
Department of Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany.
J Biomed Semantics. 2014 Jun 3;5(Suppl 1 Proceedings of the Bio-Ontologies Spec Interest G):S1. doi: 10.1186/2041-1480-5-S1-S1. eCollection 2014.
Accounts of evidence are vital to evaluate and reproduce scientific findings and integrate data on an informed basis. Currently, such accounts are often inadequate, unstandardized and inaccessible for computational knowledge engineering even though computational technologies, among them those of the semantic web, are ever more employed to represent, disseminate and integrate biomedical data and knowledge.
We present SEE (Semantic EvidencE), an RDF/OWL based approach for detailed representation of evidence in terms of the argumentative structure of the supporting background for claims even in complex settings. We derive design principles and identify minimal components for the representation of evidence. We specify the Reasoning and Discourse Ontology (RDO), an OWL representation of the model of scientific claims, their subjects, their provenance and their argumentative relations underlying the SEE approach. We demonstrate the application of SEE and illustrate its design patterns in a case study by providing an expressive account of the evidence for certain claims regarding the isolation of the enzyme glutamine synthetase.
SEE is suited to provide coherent and computationally accessible representations of evidence-related information such as the materials, methods, assumptions, reasoning and information sources used to establish a scientific finding by adopting a consistently claim-based perspective on scientific results and their evidence. SEE allows for extensible evidence representations, in which the level of detail can be adjusted and which can be extended as needed. It supports representation of arbitrary many consecutive layers of interpretation and attribution and different evaluations of the same data. SEE and its underlying model could be a valuable component in a variety of use cases that require careful representation or examination of evidence for data presented on the semantic web or in other formats.
证据描述对于评估和重现科学发现以及在充分知情的基础上整合数据至关重要。目前,尽管包括语义网技术在内的计算技术越来越多地用于表示、传播和整合生物医学数据与知识,但此类描述往往不充分、不规范且无法用于计算知识工程。
我们提出了SEE(语义证据),这是一种基于RDF/OWL的方法,用于在复杂情况下根据支持主张的背景的论证结构详细表示证据。我们推导了设计原则并确定了证据表示的最小组成部分。我们指定了推理与话语本体(RDO),它是SEE方法背后的科学主张、其主题、来源及其论证关系模型的OWL表示。我们通过对某些关于谷氨酰胺合成酶分离的主张的证据进行富有表现力的描述,展示了SEE的应用并在案例研究中说明了其设计模式。
SEE适合通过对科学结果及其证据采用始终基于主张的视角,提供与证据相关信息(如用于确立科学发现的材料、方法、假设、推理和信息来源)的连贯且可计算访问的表示。SEE允许进行可扩展的证据表示,其中细节程度可以调整,并可根据需要进行扩展。它支持表示任意多个连续的解释和归因层次以及对同一数据的不同评估。SEE及其底层模型可能是各种用例中的一个有价值的组成部分,这些用例需要仔细表示或检查以语义网或其他格式呈现的数据的证据。