IEEE Trans Image Process. 2014 Nov;23(11):4863-78. doi: 10.1109/TIP.2014.2344294. Epub 2014 Jul 30.
A Gaussian mixture model (GMM)-based algorithm is proposed for video reconstruction from temporally compressed video measurements. The GMM is used to model spatio-temporal video patches, and the reconstruction can be efficiently computed based on analytic expressions. The GMM-based inversion method benefits from online adaptive learning and parallel computation. We demonstrate the efficacy of the proposed inversion method with videos reconstructed from simulated compressive video measurements, and from a real compressive video camera. We also use the GMM as a tool to investigate adaptive video compressive sensing, i.e., adaptive rate of temporal compression.
提出了一种基于高斯混合模型(GMM)的算法,用于从时间压缩的视频测量中重建视频。GMM 用于对时空视频块进行建模,并且可以基于解析表达式有效地计算重建。基于 GMM 的反演方法受益于在线自适应学习和并行计算。我们使用从模拟压缩视频测量中重建的视频以及从真实压缩视频相机中重建的视频来演示所提出的反演方法的有效性。我们还使用 GMM 作为工具来研究自适应视频压缩感知,即时间压缩的自适应速率。