Suppr超能文献

Improved gene transfer efficiency of a DNA-lipid-apatite composite layer by controlling the layer molecular composition.

作者信息

Yazaki Yushin, Oyane Ayako, Tsurushima Hideo, Araki Hiroko, Sogo Yu, Ito Atsuo, Yamazaki Atsushi

机构信息

Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan; Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.

Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.

出版信息

Colloids Surf B Biointerfaces. 2014 Oct 1;122:465-471. doi: 10.1016/j.colsurfb.2014.07.001. Epub 2014 Jul 9.

Abstract

Surface-mediated nonviral gene transfer systems using biocompatible apatite-based composite layers have potential use in tissue engineering applications. Herein, we investigated a relatively efficient system based on a DNA-lipid-apatite composite layer (DLp-Ap layer): an apatite (Ap) layer with immobilized DNA and lipid (Lp) complexes (DLp complexes). DLp-Ap layers were fabricated on substrates using supersaturated calcium phosphate coprecipitation solutions supplemented with DLp complexes, and the molecular compositions of the DLp-Ap layers were controlled by varying the net DNA concentrations and Lp/DNA ratios in the coprecipitation solutions. Increases in both the DNA concentration and Lp/DNA ratio in the coprecipitation solution increased the DLp complex content of the resulting DLp-Ap layer. However, a higher DLp complex content did not always provide increased gene transfer efficiency to the CHO-K1 cells, because there was a threshold content of approximately 10μg/cm(2). In addition, DLp-Ap layers with similar DLp complex contents exhibited different gene transfer efficiencies, most likely due to the different Lp/DNA ratios in the layers. Notably, the optimized Lp/DNA ratios in the coprecipitation solutions for maximizing the gene transfer efficiency were lower than those of the conventional particle-mediated lipofection systems. These findings will serve as a useful design guide for the preparation of DLp-Ap layers with high gene transfer efficiency.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验