Suppr超能文献

兰德尔斑的显微CT成像。

Micro-CT imaging of Randall's plaques.

作者信息

Williams James C, Lingeman James E, Coe Fredric L, Worcester Elaine M, Evan Andrew P

机构信息

Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive MS 5055Y, Indianapolis, IN, 46202-5120, USA,

出版信息

Urolithiasis. 2015 Jan;43 Suppl 1(0 1):13-7. doi: 10.1007/s00240-014-0702-z. Epub 2014 Aug 6.

Abstract

Micro-computed tomographic imaging (micro-CT) provides unprecedented information on stone structure and mineral composition. High-resolution micro-CT even allows visualization of the lumens of tubule and/or vessels within Randall's plaque, on stones or in papillary biopsies, thus giving a non-destructive way to study these sites of stone adhesion. This paper also shows an example of a stone growing on a different anchoring mechanism: a mineral plug within the lumen of a Bellini duct (BD plug). Micro-CT shows striking structural differences between stones that have grown on Randall's plaque and those that have grown on BD plugs. Thus, Randall's plaque can be distinguished by micro-CT, and this non-destructive method shows great promise in helping to elucidate the different mechanisms by which small stones are retained in the kidney during the development of nephrolithiasis.

摘要

微计算机断层扫描成像(micro-CT)提供了关于结石结构和矿物质成分前所未有的信息。高分辨率微计算机断层扫描甚至能够可视化兰德尔斑内、结石上或乳头活检中的小管和/或血管腔,从而提供一种无损研究这些结石附着部位的方法。本文还展示了一个结石在不同锚定机制上生长的例子:乳头管(BD)管腔内的矿物质栓子(BD栓子)。微计算机断层扫描显示,在兰德尔斑上生长的结石与在BD栓子上生长的结石在结构上存在显著差异。因此,通过微计算机断层扫描可以区分兰德尔斑,这种无损方法在帮助阐明肾结石形成过程中小结石在肾脏内滞留的不同机制方面显示出巨大的前景。

相似文献

1
Micro-CT imaging of Randall's plaques.
Urolithiasis. 2015 Jan;43 Suppl 1(0 1):13-7. doi: 10.1007/s00240-014-0702-z. Epub 2014 Aug 6.
2
A continuum of mineralization from human renal pyramid to stones on stems.
Acta Biomater. 2018 Apr 15;71:72-85. doi: 10.1016/j.actbio.2018.01.040. Epub 2018 Feb 9.
3
Beginnings of nephrolithiasis: insights into the past, present and future of Randall's plaque formation research.
Curr Opin Nephrol Hypertens. 2018 Jul;27(4):236-242. doi: 10.1097/MNH.0000000000000414.
4
Association Between Randall's Plaque Stone Anchors and Renal Papillary Pits.
J Endourol. 2019 Apr;33(4):337-342. doi: 10.1089/end.2018.0589. Epub 2019 Mar 20.
6
Endoscopic mapping of renal papillae for Randall's plaques in patients with urinary stone disease.
J Urol. 1997 Dec;158(6):2062-4. doi: 10.1016/s0022-5347(01)68153-9.
7
Randall's plaque as the origin of calcium oxalate kidney stones.
Urolithiasis. 2015 Jan;43 Suppl 1:5-11. doi: 10.1007/s00240-014-0703-y. Epub 2014 Aug 7.
9
Metabolic and urinary risk factors associated with Randall's papillary plaques.
J Endourol. 2000 Aug;14(6):507-10. doi: 10.1089/end.2000.14.507.
10
Multimodal imaging reveals a unique autofluorescence signature of Randall's plaque.
Urolithiasis. 2021 Apr;49(2):123-135. doi: 10.1007/s00240-020-01216-4. Epub 2020 Oct 7.

引用本文的文献

1
Kidney stone growth through the lens of Raman mapping.
Sci Rep. 2024 May 12;14(1):10834. doi: 10.1038/s41598-024-61652-9.
2
An overview of global research landscape in etiology of urolithiasis based on bibliometric analysis.
Urolithiasis. 2023 Apr 17;51(1):71. doi: 10.1007/s00240-023-01447-1.
3
Stone Morphology Distinguishes Two Pathways of Idiopathic Calcium Oxalate Stone Pathogenesis.
J Endourol. 2022 May;36(5):694-702. doi: 10.1089/end.2021.0685. Epub 2022 Apr 29.
4
Using micro computed tomographic imaging for analyzing kidney stones.
C R Chim. 2021;24(Suppl 2). doi: 10.5802/crchim.89. Epub 2021 Jun 29.
5
Multimodal imaging reveals a unique autofluorescence signature of Randall's plaque.
Urolithiasis. 2021 Apr;49(2):123-135. doi: 10.1007/s00240-020-01216-4. Epub 2020 Oct 7.
6
Discrepancy Between Stone and Tissue Mineral Type in Patients with Idiopathic Uric Acid Stones.
J Endourol. 2020 Mar;34(3):385-393. doi: 10.1089/end.2019.0564. Epub 2020 Feb 3.
8
Differentiating kidney stones from phleboliths in unenhanced low-dose computed tomography using radiomics and machine learning.
Eur Radiol. 2019 Sep;29(9):4776-4782. doi: 10.1007/s00330-019-6004-7. Epub 2019 Feb 12.
9
Endoscopic observations as a tool to define underlying pathology in kidney stone formers.
World J Urol. 2019 Oct;37(10):2207-2215. doi: 10.1007/s00345-018-02616-3. Epub 2019 Jan 4.
10
Novel Application of Micro-Computerized Tomography for Morphologic Characterization of the Murine Penis.
J Sex Med. 2017 Dec;14(12):1533-1539. doi: 10.1016/j.jsxm.2017.10.065. Epub 2017 Nov 16.

本文引用的文献

2
Retention and growth of urinary stones: insights from imaging.
J Nephrol. 2013 Jan-Feb;26(1):25-31. doi: 10.5301/jn.5000208.
4
Micro-computed tomography for analysis of urinary calculi.
Urol Res. 2010 Dec;38(6):477-84. doi: 10.1007/s00240-010-0326-x. Epub 2010 Oct 22.
5
Plaque and deposits in nine human stone diseases.
Urol Res. 2010 Aug;38(4):239-47. doi: 10.1007/s00240-010-0296-z. Epub 2010 Jul 13.
7
A formal test of the hypothesis that idiopathic calcium oxalate stones grow on Randall's plaque.
BJU Int. 2009 Apr;103(7):966-71. doi: 10.1111/j.1464-410X.2008.08193.x. Epub 2008 Nov 19.
8
Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures.
Urol Res. 2008 Oct;36(5):251-8. doi: 10.1007/s00240-008-0151-7. Epub 2008 Sep 9.
9
THE ORIGIN AND GROWTH OF RENAL CALCULI.
Ann Surg. 1937 Jun;105(6):1009-27. doi: 10.1097/00000658-193706000-00014.
10
Mechanism of formation of human calcium oxalate renal stones on Randall's plaque.
Anat Rec (Hoboken). 2007 Oct;290(10):1315-23. doi: 10.1002/ar.20580.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验