Suppr超能文献

增效剂依伐卡托消除了囊性纤维化中ΔF508囊性纤维化跨膜传导调节因子的药理学校正作用。

Potentiator ivacaftor abrogates pharmacological correction of ΔF508 CFTR in cystic fibrosis.

作者信息

Cholon Deborah M, Quinney Nancy L, Fulcher M Leslie, Esther Charles R, Das Jhuma, Dokholyan Nikolay V, Randell Scott H, Boucher Richard C, Gentzsch Martina

机构信息

Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Division of Pediatric Pulmonology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Sci Transl Med. 2014 Jul 23;6(246):246ra96. doi: 10.1126/scitranslmed.3008680.

Abstract

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR). Newly developed "correctors" such as lumacaftor (VX-809) that improve CFTR maturation and trafficking and "potentiators" such as ivacaftor (VX-770) that enhance channel activity may provide important advances in CF therapy. Although VX-770 has demonstrated substantial clinical efficacy in the small subset of patients with a mutation (G551D) that affects only channel activity, a single compound is not sufficient to treat patients with the more common CFTR mutation, ΔF508. Thus, patients with ΔF508 will likely require treatment with both correctors and potentiators to achieve clinical benefit. However, whereas the effectiveness of acute treatment with this drug combination has been demonstrated in vitro, the impact of chronic therapy has not been established. In studies of human primary airway epithelial cells, we found that both acute and chronic treatment with VX-770 improved CFTR function in cells with the G551D mutation, consistent with clinical studies. In contrast, chronic VX-770 administration caused a dose-dependent reversal of VX-809-mediated CFTR correction in ΔF508 homozygous cultures. This result reflected the destabilization of corrected ΔF508 CFTR by VX-770, markedly increasing its turnover rate. Chronic VX-770 treatment also reduced mature wild-type CFTR levels and function. These findings demonstrate that chronic treatment with CFTR potentiators and correctors may have unexpected effects that cannot be predicted from short-term studies. Combining these drugs to maximize rescue of ΔF508 CFTR may require changes in dosing and/or development of new potentiator compounds that do not interfere with CFTR stability.

摘要

囊性纤维化(CF)由囊性纤维化跨膜传导调节因子(CFTR)的突变引起。新开发的诸如鲁马卡托(VX - 809)之类可改善CFTR成熟和转运的“校正剂”,以及诸如依伐卡托(VX - 770)之类可增强通道活性的“增效剂”,可能会在CF治疗方面带来重要进展。尽管VX - 770已在仅影响通道活性的单一突变(G551D)的一小部分患者中显示出显著的临床疗效,但单一化合物不足以治疗具有更常见CFTR突变ΔF508的患者。因此,具有ΔF508突变的患者可能需要同时使用校正剂和增效剂进行治疗才能获得临床益处。然而,虽然这种药物组合的急性治疗效果已在体外得到证实,但慢性治疗的影响尚未明确。在对人原代气道上皮细胞的研究中,我们发现,与临床研究一致,VX - 770的急性和慢性治疗均可改善具有G551D突变的细胞中的CFTR功能。相比之下,在ΔF508纯合培养物中,长期施用VX - 770会导致VX - 809介导的CFTR校正出现剂量依赖性逆转。这一结果反映了VX - 770使校正后的ΔF508 CFTR不稳定,显著提高了其周转率。长期VX - 770治疗还降低了成熟野生型CFTR的水平和功能。这些发现表明,CFTR增效剂和校正剂的长期治疗可能会产生短期研究无法预测的意外效果。联合使用这些药物以最大程度地挽救ΔF508 CFTR可能需要改变给药方式和/或开发不干扰CFTR稳定性的新型增效剂化合物。

相似文献

1
Potentiator ivacaftor abrogates pharmacological correction of ΔF508 CFTR in cystic fibrosis.
Sci Transl Med. 2014 Jul 23;6(246):246ra96. doi: 10.1126/scitranslmed.3008680.
2
Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression.
Sci Transl Med. 2014 Jul 23;6(246):246ra97. doi: 10.1126/scitranslmed.3008889.
4
Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis.
Cochrane Database Syst Rev. 2015 Mar 26(3):CD009841. doi: 10.1002/14651858.CD009841.pub2.
5
Ivacaftor: the first therapy acting on the primary cause of cystic fibrosis.
Drugs Today (Barc). 2013 Apr;49(4):253-60. doi: 10.1358/dot.2013.49.4.1940984.
6
Mechanistic Approaches to Improve Correction of the Most Common Disease-Causing Mutation in Cystic Fibrosis.
PLoS One. 2016 May 23;11(5):e0155882. doi: 10.1371/journal.pone.0155882. eCollection 2016.
9
Cystic fibrosis transmembrane conductance regulator-modifying medications: the future of cystic fibrosis treatment.
Ann Pharmacother. 2012 Jul-Aug;46(7-8):1065-75. doi: 10.1345/aph.1R076. Epub 2012 Jun 26.
10
Mutation-specific dual potentiators maximize rescue of CFTR gating mutants.
J Cyst Fibros. 2020 Mar;19(2):236-244. doi: 10.1016/j.jcf.2019.10.011. Epub 2019 Oct 31.

引用本文的文献

1
Neutrophil extracellular traps and interleukin-1β in cystic fibrosis lung disease.
Front Immunol. 2025 Jul 28;16:1595994. doi: 10.3389/fimmu.2025.1595994. eCollection 2025.
2
Lumacaftor inhibits channel activity of rescued F508del cystic fibrosis transmembrane conductance regulator.
Am J Physiol Lung Cell Mol Physiol. 2025 Jun 1;328(6):L832-L843. doi: 10.1152/ajplung.00287.2024. Epub 2025 May 7.
4
Global functional genomics reveals GRK5 as a cystic fibrosis therapeutic target synergistic with current modulators.
iScience. 2025 Feb 1;28(3):111942. doi: 10.1016/j.isci.2025.111942. eCollection 2025 Mar 21.
5
BOS-318 treatment enhances elexacaftor-tezacaftor-ivacaftor-mediated improvements in airway hydration and mucociliary transport.
ERJ Open Res. 2025 Feb 25;11(1). doi: 10.1183/23120541.00445-2024. eCollection 2025 Jan.
6
The effect of triple CFTR modulator therapy and azithromycin on ion channels and inflammation in cystic fibrosis.
ERJ Open Res. 2024 Dec 16;10(6). doi: 10.1183/23120541.00502-2024. eCollection 2024 Nov.
7
Pharmacological rescue of the G85E CFTR variant by preclinical and approved modulators.
Front Pharmacol. 2024 Nov 18;15:1494327. doi: 10.3389/fphar.2024.1494327. eCollection 2024.
10
Ivacaftor for Chronic Obstructive Pulmonary Disease - Results from a Phase 2, Randomized Controlled Trial.
Am J Respir Crit Care Med. 2024 Sep 24;211(5):823-31. doi: 10.1164/rccm.202407-1302OC.

本文引用的文献

1
Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression.
Sci Transl Med. 2014 Jul 23;6(246):246ra97. doi: 10.1126/scitranslmed.3008889.
2
Antibacterial properties of the CFTR potentiator ivacaftor.
J Cyst Fibros. 2014 Sep;13(5):515-9. doi: 10.1016/j.jcf.2014.02.004. Epub 2014 Mar 5.
3
Ivacaftor in a G551D homozygote with cystic fibrosis.
N Engl J Med. 2013 Sep 26;369(13):1280-2. doi: 10.1056/NEJMc1213681.
4
Development, clinical utility, and place of ivacaftor in the treatment of cystic fibrosis.
Drug Des Devel Ther. 2013 Aug 30;7:929-37. doi: 10.2147/DDDT.S30345. eCollection 2013.
5
Ivacaftor treatment of cystic fibrosis patients with the G551D mutation: a review of the evidence.
Ther Adv Respir Dis. 2013 Oct;7(5):288-96. doi: 10.1177/1753465813502115. Epub 2013 Sep 3.
6
Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene.
Nat Genet. 2013 Oct;45(10):1160-7. doi: 10.1038/ng.2745. Epub 2013 Aug 25.
7
Airway drug pharmacokinetics via analysis of exhaled breath condensate.
Pulm Pharmacol Ther. 2014 Feb;27(1):76-82. doi: 10.1016/j.pupt.2013.07.009. Epub 2013 Aug 7.
10
Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function.
J Cyst Fibros. 2014 Jan;13(1):29-36. doi: 10.1016/j.jcf.2013.06.008. Epub 2013 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验