Suppr超能文献

基于替拉瑞韦治疗后的病毒进化动力学建模。

Modeling viral evolutionary dynamics after telaprevir-based treatment.

作者信息

Haseltine Eric L, De Meyer Sandra, Dierynck Inge, Bartels Doug J, Ghys Anne, Davis Andrew, Zhang Eileen Z, Tigges Ann M, Spanks Joan, Picchio Gaston, Kieffer Tara L, Sullivan James C

机构信息

Vertex Pharmaceuticals Incorporated, Boston, Massachussets, United States of America.

Janssen Infectious Diseases BVBA, Beerse, Belgium.

出版信息

PLoS Comput Biol. 2014 Aug 7;10(8):e1003772. doi: 10.1371/journal.pcbi.1003772. eCollection 2014 Aug.

Abstract

For patients infected with hepatitis C virus (HCV), the combination of the direct-acting antiviral agent telaprevir, pegylated-interferon alfa (Peg-IFN), and ribavirin (RBV) significantly increases the chances of sustained virologic response (SVR) over treatment with Peg-IFN and RBV alone. If patients do not achieve SVR with telaprevir-based treatment, their viral population is often significantly enriched with telaprevir-resistant variants at the end of treatment. We sought to quantify the evolutionary dynamics of these post-treatment resistant variant populations. Previous estimates of these dynamics were limited by analyzing only population sequence data (20% sensitivity, qualitative resistance information) from 388 patients enrolled in Phase 3 clinical studies. Here we add clonal sequence analysis (5% sensitivity, quantitative) for a subset of these patients. We developed a computational model which integrates both the qualitative and quantitative sequence data, and which forms a framework for future analyses of drug resistance. The model was qualified by showing that deep-sequence data (1% sensitivity) from a subset of these patients are consistent with model predictions. When determining the median time for viral populations to revert to 20% resistance in these patients, the model predicts 8.3 (95% CI: 7.6, 8.4) months versus 10.7 (9.9, 12.8) months estimated using solely population sequence data for genotype 1a, and 1.0 (0.0, 1.4) months versus 0.9 (0.0, 2.7) months for genotype 1b. For each individual patient, the time to revert to 20% resistance predicted by the model was typically comparable to or faster than that estimated using solely population sequence data. Furthermore, the model predicts a median of 11.0 and 2.1 months after treatment failure for viral populations to revert to 99% wild-type in patients with HCV genotypes 1a or 1b, respectively. Our modeling approach provides a framework for projecting accurate, quantitative assessment of HCV resistance dynamics from a data set consisting of largely qualitative information.

摘要

对于丙型肝炎病毒(HCV)感染患者,与单独使用聚乙二醇化干扰素α(Peg-IFN)和利巴韦林(RBV)治疗相比,直接作用抗病毒药物特拉匹韦、Peg-IFN和RBV联合使用可显著提高持续病毒学应答(SVR)的几率。如果患者采用基于特拉匹韦的治疗未实现SVR,其病毒群体在治疗结束时通常会显著富集对特拉匹韦耐药的变异体。我们试图量化这些治疗后耐药变异体群体的进化动态。以往对这些动态的估计仅通过分析3期临床研究中388名患者的群体序列数据(敏感性20%,定性耐药信息)而受到限制。在此,我们对这些患者的一个子集增加了克隆序列分析(敏感性5%,定量)。我们开发了一个计算模型,该模型整合了定性和定量序列数据,并为未来的耐药性分析构建了一个框架。通过表明这些患者子集中的深度序列数据(敏感性1%)与模型预测一致,该模型得到了验证。在确定这些患者病毒群体恢复到20%耐药的中位时间时,对于1a基因型,模型预测为8.3(95%CI:7.6,8.4)个月,而仅使用群体序列数据估计为10.7(9.9,12.8)个月;对于1b基因型,模型预测为1.0(0.0,1.4)个月,而仅使用群体序列数据估计为0.9(0.0,2.7)个月。对于每个个体患者,模型预测的恢复到20%耐药的时间通常与仅使用群体序列数据估计的时间相当或更快。此外,该模型预测,在治疗失败后,HCV 1a或1b基因型患者的病毒群体恢复到99%野生型的中位时间分别为11.0个月和2.1个月。我们的建模方法为从主要由定性信息组成的数据集中对HCV耐药动态进行准确、定量评估提供了一个框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验