Ma Rui, Klindt Gary S, Riedel-Kruse Ingmar H, Jülicher Frank, Friedrich Benjamin M
Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany and Institute for Advanced Study, Tsinghua University, 100084 Beijing, China.
Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.
Phys Rev Lett. 2014 Jul 25;113(4):048101. doi: 10.1103/PhysRevLett.113.048101. Epub 2014 Jul 21.
The eukaryotic flagellum beats periodically, driven by the oscillatory dynamics of molecular motors, to propel cells and pump fluids. Small but perceivable fluctuations in the beat of individual flagella have physiological implications for synchronization in collections of flagella as well as for hydrodynamic interactions between flagellated swimmers. Here, we characterize phase and amplitude fluctuations of flagellar bending waves using shape mode analysis and limit-cycle reconstruction. We report a quality factor of flagellar oscillations Q = 38.0 ± 16.7 (mean ± s.e.). Our analysis shows that flagellar fluctuations are dominantly of active origin. Using a minimal model of collective motor oscillations, we demonstrate how the stochastic dynamics of individual motors can give rise to active small-number fluctuations in motor-cytoskeleton systems.
真核生物鞭毛受分子马达的振荡动力学驱动而周期性摆动,以推动细胞和泵送液体。单个鞭毛摆动中微小但可感知的波动,对鞭毛集合中的同步以及鞭毛驱动的游动者之间的流体动力学相互作用具有生理意义。在这里,我们使用形状模式分析和极限环重建来表征鞭毛弯曲波的相位和幅度波动。我们报告了鞭毛振荡的品质因数Q = 38.0 ± 16.7(平均值±标准误差)。我们的分析表明,鞭毛波动主要源于主动因素。使用集体马达振荡的最小模型,我们展示了单个马达的随机动力学如何在马达 -细胞骨架系统中产生主动的少数波动。