Suppr超能文献

岩浆海洋凝固过程中月球地壳的收缩或扩张?

Contraction or expansion of the Moon's crust during magma ocean freezing?

作者信息

Elkins-Tanton Linda T, Bercovici David

机构信息

Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington DC, USA

Department of Geology and Geophysics, Yale University, New Haven, CT, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130240. doi: 10.1098/rsta.2013.0240.

Abstract

The lack of contraction features on the Moon has been used to argue that the Moon underwent limited secular cooling, and thus had a relatively cool initial state. A cool early state in turn limits the depth of the lunar magma ocean. Recent GRAIL gravity measurements, however, suggest that dikes were emplaced in the lower crust, requiring global lunar expansion. Starting from the magma ocean state, we show that solidification of the lunar magma ocean would most likely result in expansion of the young lunar crust, and that viscous relaxation of the crust would prevent early tectonic features of contraction or expansion from being recorded permanently. The most likely process for creating the expansion recorded by the dikes is melting during cumulate overturn of the newly solidified lunar mantle.

摘要

月球上缺乏收缩特征,这一点被用来证明月球经历的长期冷却有限,因此初始状态相对较冷。而较冷的早期状态反过来又限制了月球岩浆海洋的深度。然而,最近的圣杯号重力测量表明,岩脉侵入了月球下地壳,这意味着月球发生了全球性的膨胀。从岩浆海洋状态开始,我们表明,月球岩浆海洋的固化很可能导致年轻的月球地壳膨胀,并且地壳的粘性松弛会阻止收缩或膨胀的早期构造特征被永久记录下来。造成岩脉所记录的膨胀的最可能过程是新固化的月球地幔堆积翻转期间的熔融。

相似文献

1
Contraction or expansion of the Moon's crust during magma ocean freezing?
Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130240. doi: 10.1098/rsta.2013.0240.
2
Chronological evidence that the Moon is either young or did not have a global magma ocean.
Nature. 2011 Aug 17;477(7362):70-2. doi: 10.1038/nature10328.
3
Long-lived lunar volcanism sustained by precession-driven core-mantle friction.
Natl Sci Rev. 2023 Oct 31;11(2):nwad276. doi: 10.1093/nsr/nwad276. eCollection 2024 Feb.
4
Large impact cratering during lunar magma ocean solidification.
Nat Commun. 2021 Sep 14;12(1):5433. doi: 10.1038/s41467-021-25818-7.
5
Formation of the Lunar Primary Crust From a Long-Lived Slushy Magma Ocean.
Geophys Res Lett. 2022 Jan 28;49(2):e2021GL095408. doi: 10.1029/2021GL095408. Epub 2022 Jan 13.
6
The chlorine isotope fingerprint of the lunar magma ocean.
Sci Adv. 2015 Sep 25;1(8):e1500380. doi: 10.1126/sciadv.1500380. eCollection 2015 Sep.
7
Reconstructing the late-accretion history of the Moon.
Nature. 2019 Jul;571(7764):226-229. doi: 10.1038/s41586-019-1359-0. Epub 2019 Jul 10.
8
Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model.
Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130241. doi: 10.1098/rsta.2013.0241.
9
Extensive volatile loss during formation and differentiation of the Moon.
Nat Commun. 2015 Jul 3;6:7617. doi: 10.1038/ncomms8617.
10
Early differentiation of the Earth and the Moon.
Philos Trans A Math Phys Eng Sci. 2008 Nov 28;366(1883):4105-28. doi: 10.1098/rsta.2008.0125.

引用本文的文献

1
Lunar exploration: opening a window into the history and evolution of the inner Solar System.
Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130315. doi: 10.1098/rsta.2013.0315.
2
Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model.
Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130241. doi: 10.1098/rsta.2013.0241.

本文引用的文献

1
The crust of the Moon as seen by GRAIL.
Science. 2013 Feb 8;339(6120):671-5. doi: 10.1126/science.1231530. Epub 2012 Dec 5.
2
Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry.
Science. 2013 Feb 8;339(6120):675-8. doi: 10.1126/science.1231753. Epub 2012 Dec 5.
3
Accretion of the Earth.
Philos Trans A Math Phys Eng Sci. 2008 Nov 28;366(1883):4061-75. doi: 10.1098/rsta.2008.0101.
4
Lunar anorthosites: rare-Earth and other elemental abundances.
Science. 1970 Nov 27;170(3961):969-74. doi: 10.1126/science.170.3961.969.
5
Lunar anorthosites.
Science. 1970 Jan 30;167(3918):602-4. doi: 10.1126/science.167.3918.602.
6
Potassium, rubidium, strontium, barium, and rare-Earth concentrations in lunar rocks and separated phases.
Science. 1970 Jan 30;167(3918):493-5. doi: 10.1126/science.167.3918.493.
7
The Density of Hydrous Magmatic Liquids.
Science. 1999 Feb 26;283(5406):1314-1317. doi: 10.1126/science.283.5406.1314.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验