Suppr超能文献

由长期存在的软质岩浆海洋形成月球原生地壳。

Formation of the Lunar Primary Crust From a Long-Lived Slushy Magma Ocean.

作者信息

Michaut Chloé, Neufeld Jerome A

机构信息

Ecole Normale Supérieure de Lyon Université de Lyon Université Claude Bernard Lyon 1 Laboratoire de Géologie de Lyon, Terre, Planètes, Environnement Lyon France.

Institut Universitaire de France Paris France.

出版信息

Geophys Res Lett. 2022 Jan 28;49(2):e2021GL095408. doi: 10.1029/2021GL095408. Epub 2022 Jan 13.

Abstract

Classical fractional crystallization scenarios of early lunar evolution suggest crustal formation by the flotation of light anorthite minerals from a liquid magma ocean. However, this model is challenged by the Myr age range of primitive ferroan anorthosites, their concordance with Mg-suite magmatism and by the compositional diversity observed in lunar anorthosites. Here, we propose a new model of slushy magma ocean crystallization in which crystals remain suspended in the lunar interior and crust formation only begins once a critical crystal content is reached. Thereafter crustal formation occurs by buoyant melt extraction and magmatism. The mixture viscosity strongly depends on temperature and solid fraction driving the development of a surface stagnant lid where enhanced solidification and buoyant ascent of melt lead to an anorthite-enriched crust. This model explains lunar anorthosites heterogeneity and suggests a crustal formation timescale of 100s Ma, reconciling anorthosite ages with an early age of the Moon.

摘要

早期月球演化的经典分离结晶模式表明,地壳是由液态岩浆海洋中轻的钙长石矿物上浮形成的。然而,这种模型受到原始铁斜长岩数十亿年年龄范围、它们与镁质套岩浆作用的一致性以及月球斜长岩中观察到的成分多样性的挑战。在这里,我们提出了一种新的岩浆糊海洋结晶模型,其中晶体悬浮在月球内部,只有当达到临界晶体含量时地壳形成才开始。此后,通过浮力熔体提取和岩浆作用形成地壳。混合物粘度强烈依赖于温度和固体分数,驱动了一个表面停滞盖层的发展,在那里增强的凝固和熔体的浮力上升导致了富含钙长石的地壳。该模型解释了月球斜长岩的异质性,并提出了一个100s Ma的地壳形成时间尺度,使斜长岩年龄与月球早期年龄相协调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e1/9286579/c94b1babb88f/GRL-49-0-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验