Suppr超能文献

重新审视月球 - 地球系统的碘 - 钚 - 氙年代测定法。

The iodine-plutonium-xenon age of the Moon-Earth system revisited.

作者信息

Avice G, Marty B

机构信息

CRPG-CNRS, Université de Lorraine, 15 rue Notre-Dame des Pauvres, BP 20, 54501 Vandoeuvre-lès-Nancy Cedex, France

CRPG-CNRS, Université de Lorraine, 15 rue Notre-Dame des Pauvres, BP 20, 54501 Vandoeuvre-lès-Nancy Cedex, France.

出版信息

Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130260. doi: 10.1098/rsta.2013.0260.

Abstract

Iodine-plutonium-xenon isotope systematics have been used to re-evaluate time constraints on the early evolution of the Earth-atmosphere system and, by inference, on the Moon-forming event. Two extinct radionuclides ((129)I, T1/2=15.6 Ma and (244)Pu, T1/2=80 Ma) have produced radiogenic (129)Xe and fissiogenic (131-136)Xe, respectively, within the Earth, the related isotope fingerprints of which are seen in the compositions of mantle and atmospheric Xe. Recent studies of Archaean rocks suggest that xenon atoms have been lost from the Earth's atmosphere and isotopically fractionated during long periods of geological time, until at least the end of the Archaean eon. Here, we build a model that takes into account these results. Correction for Xe loss permits the computation of new closure ages for the Earth's atmosphere that are in agreement with those computed for mantle Xe. The corrected Xe formation interval for the Earth-atmosphere system is [Formula: see text] Ma after the beginning of Solar System formation. This time interval may represent a lower limit for the age of the Moon-forming impact.

摘要

碘 - 钚 - 氙同位素体系已被用于重新评估地球 - 大气系统早期演化的时间限制,并据此推断月球形成事件的时间限制。两种已灭绝的放射性核素(¹²⁹I,半衰期T₁/₂ = 1560万年;²⁴⁴Pu,半衰期T₁/₂ = 8000万年)分别在地球内部产生了放射成因的¹²⁹Xe和裂变成因的¹³¹ - ¹³⁶Xe,在地幔和大气Xe的组成中可以看到它们相关的同位素指纹。近期对太古代岩石的研究表明,在漫长的地质时期内,氙原子已从地球大气中流失并发生了同位素分馏,至少持续到太古代末期。在此,我们构建了一个考虑这些结果的模型。对Xe损失的校正使得能够计算出与地幔Xe计算结果一致的地球大气新封闭年龄。地球 - 大气系统校正后的Xe形成时间间隔是太阳系形成开始后[公式:见正文]百万年。这个时间间隔可能代表月球形成撞击年龄的下限。

相似文献

1
The iodine-plutonium-xenon age of the Moon-Earth system revisited.
Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130260. doi: 10.1098/rsta.2013.0260.
2
Geochemical evidence for high volatile fluxes from the mantle at the end of the Archaean.
Nature. 2019 Nov;575(7783):485-488. doi: 10.1038/s41586-019-1745-7. Epub 2019 Nov 20.
3
Early differentiation and volatile accretion recorded in deep-mantle neon and xenon.
Nature. 2012 Jun 6;486(7401):101-4. doi: 10.1038/nature11141.
4
Plutonium-fission xenon found in Earth's mantle.
Science. 1998 May 8;280(5365):877-80. doi: 10.1126/science.280.5365.877.
5
The origin and degassing history of the Earth's atmosphere revealed by Archean xenon.
Nat Commun. 2017 May 18;8:15455. doi: 10.1038/ncomms15455.
6
Isotopes as clues to the origin and earliest differentiation history of the Earth.
Philos Trans A Math Phys Eng Sci. 2008 Nov 28;366(1883):4129-62. doi: 10.1098/rsta.2008.0174.
7
Xenon iron oxides predicted as potential Xe hosts in Earth's lower mantle.
Nat Commun. 2020 Oct 16;11(1):5227. doi: 10.1038/s41467-020-19107-y.
8
What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere.
Philos Trans A Math Phys Eng Sci. 2008 Nov 28;366(1883):4183-203. doi: 10.1098/rsta.2008.0150.
9
Xenon isotopic constraints on the history of volatile recycling into the mantle.
Nature. 2018 Aug;560(7717):223-227. doi: 10.1038/s41586-018-0388-4. Epub 2018 Aug 8.
10
Chondritic xenon in the Earth's mantle.
Nature. 2016 May 5;533(7601):82-5. doi: 10.1038/nature17434. Epub 2016 Apr 25.

引用本文的文献

1
What the earliest evidence for life tells us about the early evolution of the biosphere.
Philos Trans R Soc Lond B Biol Sci. 2025 Aug 7;380(1931):20240106. doi: 10.1098/rstb.2024.0106.
2
Understanding noble gas incorporation in mantle minerals: an atomistic study.
Sci Rep. 2024 Jun 12;14(1):13493. doi: 10.1038/s41598-024-61963-x.
3
Setting the geological scene for the origin of life and continuing open questions about its emergence.
Front Astron Space Sci. 2023 Jan 5;9:1095701. doi: 10.3389/fspas.2022.1095701.
4
Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets.
Space Sci Rev. 2018 Feb;214(1). doi: 10.1007/s11214-018-0474-9. Epub 2018 Jan 23.
5
The origin and degassing history of the Earth's atmosphere revealed by Archean xenon.
Nat Commun. 2017 May 18;8:15455. doi: 10.1038/ncomms15455.
6
Chondritic xenon in the Earth's mantle.
Nature. 2016 May 5;533(7601):82-5. doi: 10.1038/nature17434. Epub 2016 Apr 25.

本文引用的文献

1
Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics.
Nature. 2013 Jun 6;498(7452):87-90. doi: 10.1038/nature12152.
2
Deep fracture fluids isolated in the crust since the Precambrian era.
Nature. 2013 May 16;497(7449):357-60. doi: 10.1038/nature12127.
3
Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning.
Science. 2012 Nov 23;338(6110):1047-52. doi: 10.1126/science.1225542. Epub 2012 Oct 17.
4
Early differentiation and volatile accretion recorded in deep-mantle neon and xenon.
Nature. 2012 Jun 6;486(7401):101-4. doi: 10.1038/nature11141.
5
Preserving noble gases in a convecting mantle.
Nature. 2009 May 28;459(7246):560-3. doi: 10.1038/nature08018.
7
Plutonium-244: confirmation as an extinct radioactivity.
Science. 1971 May 21;172(3985):837-40. doi: 10.1126/science.172.3985.837.
8
Short-lived chemical heterogeneities in the archean mantle with implications for mantle convection.
Science. 1994 Mar 18;263(5153):1593-6. doi: 10.1126/science.263.5153.1593.
9
Xenon-iodine dating: sharp isochronism in chondrites.
Science. 1967 Apr 14;156(3772):233-6. doi: 10.1126/science.156.3772.233.
10
Hf-W chronometry of lunar metals and the age and early differentiation of the Moon.
Science. 2005 Dec 9;310(5754):1671-4. doi: 10.1126/science.1118842. Epub 2005 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验