Instituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, 90146 Palermo, Italy.
Centre de Recherches Pétrographiques et Géochimiques, UMR 7358, Université de Lorraine, CNRS, 54501 Vandoeuvre-lès-Nancy, France.
Nature. 2016 May 5;533(7601):82-5. doi: 10.1038/nature17434. Epub 2016 Apr 25.
Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.
稀有气体同位素是研究行星挥发物起源、地球吸积和演化的有力示踪剂。岩浆气体的组成提供了了解地幔和大气演化的线索。尽管近年来在行星物质和地幔衍生气体的研究方面取得了分析进展,但地幔和大气中行星气体可能存在双重起源仍未得到限制。与我们星球内部挥发物和潜在宇宙化学端元之间关系有关的证据很少。在这里,我们使用来自德国埃菲尔火山区的岩浆气体的高精度分析表明,轻氙同位素确定了一种球粒陨石原始成分,与大气氙的前体不同。这与地幔中挥发物的小行星起源一致,并表明大气和地幔中的挥发物起源于不同的宇宙化学源。此外,我们的数据还表明,埃菲尔岩浆作用的起源是深部地幔羽流。自大约 44.5 亿年前以来,相应的地幔源就与对流地幔隔离开来,这与预测地幔域早期隔离的模型一致。氙同位素系统学支持洋中脊和大陆或大洋羽流源之间的明显区别,化学非均质性可追溯到地球的吸积。现在由埃菲尔气体采样的深部储层的挥发性/难熔性(碘/钚)组成低于由洋中脊火山作用采样的浅层地幔,这突出表明在地球吸积的最初数千万年中,富含挥发性物质的物质的贡献不断增加。