Aldred Katie J, Breland Erin J, Vlčková Vladislava, Strub Marie-Paule, Neuman Keir C, Kerns Robert J, Osheroff Neil
Department of Biochemistry and ‡Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States.
Biochemistry. 2014 Sep 2;53(34):5558-67. doi: 10.1021/bi500682e. Epub 2014 Aug 21.
Although quinolones have been in clinical use for decades, the mechanism underlying drug activity and resistance has remained elusive. However, recent studies indicate that clinically relevant quinolones interact with Bacillus anthracis (Gram-positive) topoisomerase IV through a critical water-metal ion bridge and that the most common quinolone resistance mutations decrease drug activity by disrupting this bridge. As a first step toward determining whether the water-metal ion bridge is a general mechanism of quinolone-topoisomerase interaction, we characterized drug interactions with wild-type Escherichia coli (Gram-negative) topoisomerase IV and a series of ParC enzymes with mutations (S80L, S80I, S80F, and E84K) in the predicted bridge-anchoring residues. Results strongly suggest that the water-metal ion bridge is essential for quinolone activity against E. coli topoisomerase IV. Although the bridge represents a common and critical mechanism that underlies broad-spectrum quinolone function, it appears to play different roles in B. anthracis and E. coli topoisomerase IV. The water-metal ion bridge is the most important binding contact of clinically relevant quinolones with the Gram-positive enzyme. However, it primarily acts to properly align clinically relevant quinolones with E. coli topoisomerase IV. Finally, even though ciprofloxacin is unable to increase levels of DNA cleavage mediated by several of the Ser80 and Glu84 mutant E. coli enzymes, the drug still retains the ability to inhibit the overall catalytic activity of these topoisomerase IV proteins. Inhibition parallels drug binding, suggesting that the presence of the drug in the active site is sufficient to diminish DNA relaxation rates.
尽管喹诺酮类药物已在临床使用数十年,但药物活性和耐药性的潜在机制仍不清楚。然而,最近的研究表明,具有临床相关性的喹诺酮类药物通过一个关键的水-金属离子桥与炭疽芽孢杆菌(革兰氏阳性)拓扑异构酶IV相互作用,并且最常见的喹诺酮耐药性突变通过破坏这个桥来降低药物活性。作为确定水-金属离子桥是否是喹诺酮类药物与拓扑异构酶相互作用的普遍机制的第一步,我们对野生型大肠杆菌(革兰氏阴性)拓扑异构酶IV以及一系列在预测的桥锚定残基处有突变(S80L、S80I、S80F和E84K)的ParC酶的药物相互作用进行了表征。结果强烈表明,水-金属离子桥对于喹诺酮类药物对大肠杆菌拓扑异构酶IV的活性至关重要。尽管该桥代表了广谱喹诺酮类药物功能的一个常见且关键的机制,但它在炭疽芽孢杆菌和大肠杆菌拓扑异构酶IV中似乎发挥着不同的作用。水-金属离子桥是具有临床相关性的喹诺酮类药物与革兰氏阳性酶最重要的结合接触点。然而,它主要作用是使具有临床相关性的喹诺酮类药物与大肠杆菌拓扑异构酶IV正确对齐。最后,尽管环丙沙星无法增加几种Ser80和Glu84突变型大肠杆菌酶介导的DNA切割水平,但该药物仍保留抑制这些拓扑异构酶IV蛋白整体催化活性的能力。抑制作用与药物结合平行,表明活性位点中药物的存在足以降低DNA松弛速率。