Suppr超能文献

水生栖热菌中天然嵌合的 IIA 拓扑异构酶突出了功能平行物出现的进化途径。

A naturally chimeric type IIA topoisomerase in Aquifex aeolicus highlights an evolutionary path for the emergence of functional paralogs.

机构信息

Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22055-9. doi: 10.1073/pnas.1012938107. Epub 2010 Nov 12.

Abstract

Bacteria frequently possess two type IIA DNA topoisomerases, gyrase and topo IV, which maintain chromosome topology by variously supercoiling, relaxing, and disentangling DNA. DNA recognition and functional output is thought to be controlled by the C-terminal domain (CTD) of the topoisomerase DNA binding subunit (GyrA/ParC). The deeply rooted organism Aquifex aeolicus encodes one type IIA topoisomerase conflictingly categorized as either DNA gyrase or topo IV. To resolve this enzyme's catalytic properties and heritage, we conducted a series of structural and biochemical studies on the isolated GyrA/ParC CTD and the holoenzyme. Whereas the CTD displays a global structure similar to that seen in bone fide GyrA and ParC paralogs, it lacks a key functional motif (the "GyrA-box") and fails to wrap DNA. Biochemical assays show that the A. aeolicus topoisomerase cannot supercoil DNA, but robustly removes supercoils and decatenates DNA, two hallmark activities of topo IV. Despite these properties, phylogenetic analyses place all functional domains except the CTD squarely within a gyrase lineage, and the A. aeolicus GyrB subunit is capable of supporting supercoiling with Escherichia coli GyrA, but not DNA relaxation with E. coli ParC. Moreover, swapping the A. aeolicus GyrA/ParC CTD with the GyrA CTD from Thermotoga maritima creates an enzyme that negatively supercoils DNA. These findings identify A. aeolicus as the first bacterial species yet found to exist without a functional gyrase, and suggest an evolutionary path for generation of bacterial type IIA paralogs.

摘要

细菌通常拥有两种 IIA 型 DNA 拓扑异构酶,即拓扑异构酶 II 和拓扑异构酶 IV,它们通过各种方式超螺旋、松弛和解缠 DNA 来维持染色体拓扑结构。DNA 识别和功能输出被认为是由拓扑异构酶 DNA 结合亚基(GyrA/ParC)的 C 端结构域(CTD)控制的。起源深远的水生栖热菌 Aquifex aeolicus 编码一种 IIA 型拓扑异构酶,它被归类为 DNA 拓扑异构酶 II 或拓扑异构酶 IV。为了解决这种酶的催化特性和遗传特性,我们对分离的 GyrA/ParC CTD 和全酶进行了一系列结构和生化研究。虽然 CTD 显示出与真正的 GyrA 和 ParC 同源物相似的全局结构,但它缺乏一个关键的功能基序(“GyrA 盒”),并且无法包裹 DNA。生化测定表明,A. aeolicus 拓扑异构酶不能超螺旋化 DNA,但能有效地去除超螺旋和使 DNA 解连环,这是拓扑异构酶 IV 的两个标志性活性。尽管具有这些特性,但系统发育分析将除 CTD 以外的所有功能域都准确地置于拓扑异构酶 II 谱系内,并且 A. aeolicus GyrB 亚基能够支持大肠杆菌 GyrA 的超螺旋化,但不能支持大肠杆菌 ParC 的 DNA 松弛。此外,将 A. aeolicus GyrA/ParC CTD 与来自嗜热栖热菌的 GyrA CTD 交换,会产生一种能使 DNA 负超螺旋化的酶。这些发现确定 A. aeolicus 是第一个被发现没有功能性拓扑异构酶 II 的细菌物种,并为细菌 IIA 型同源物的产生提供了一个进化途径。

相似文献

引用本文的文献

2
Structural basis of chiral wrap and T-segment capture by DNA gyrase.DNA 拓扑异构酶对手性包裹和 T 段捕获的结构基础。
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2407398121. doi: 10.1073/pnas.2407398121. Epub 2024 Nov 26.
6
The regulation of DNA supercoiling across evolution.DNA 超螺旋结构在进化中的调控。
Protein Sci. 2021 Oct;30(10):2042-2056. doi: 10.1002/pro.4171. Epub 2021 Aug 23.

本文引用的文献

3
Multiple alignment of DNA sequences with MAFFT.使用MAFFT对DNA序列进行多重比对。
Methods Mol Biol. 2009;537:39-64. doi: 10.1007/978-1-59745-251-9_3.
7
Evolution of the beta-propeller fold.β-螺旋桨折叠结构的演化
Proteins. 2008 May 1;71(2):795-803. doi: 10.1002/prot.21764.
8
Origin and evolution of DNA topoisomerases.DNA拓扑异构酶的起源与进化
Biochimie. 2007 Apr;89(4):427-46. doi: 10.1016/j.biochi.2006.12.009. Epub 2007 Jan 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验